Skip to main content
Log in

Adaptive Dynamic Coupling Control of Hybrid Joints of Human-Symbiotic Wheeled Mobile Manipulators with Unmodelled Dynamics

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

In this paper, adaptive dynamic coupling control is considered for hybrid joints, which could be switched to either active (actuated) or passive (under-actuated) mode, for human-symbiotic wheeled mobile manipulators with unmodelled dynamics. This social robot can be used in the house, the office, etc, which can flexibly interact with the human and would not injure the people. The constraints for such social robots consist of kinematic constraints and dynamic constraints. Based on Lyapunov synthesis, adaptive coupling control using physical properties of mobile social robot is proposed for passive hybrid joints, which ensures that the system outputs track the given bounded reference signals within a small neighborhood of zero, and guarantee semi-global uniform boundedness of all closed loop signals. The effectiveness of the proposed controls is verified through extensive simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stirling WC, Nokleby MS (2009) Satisficing coordination and social welfare for robotic societies. Int J Soc Robot 1(1):53–69

    Article  Google Scholar 

  2. Bartneck C, Kulic DD, Croft E, Zoghbi S (2009) Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int J Soc Robot 1(1):71–81

    Article  Google Scholar 

  3. Li Z, Ming A, Xi N, Gu J, Shimojo M (2005) Development of hybrid joints for the complaint arm of human-symbiotic mobile manipulator. Int J Robot Autom 20(4):260–270

    Google Scholar 

  4. Takubo T, Arai H, Tanie K (2002) Control of mobile manipulator using a virtual impedance wall. In: Proceedings of IEEE international conference on robotics and automation, pp 3571–3576

  5. Lin S, Goldenberg AA (2001) Neural-network control of mobile manipulators. IEEE Trans Neural Netw 12(5):1121–1133

    Article  Google Scholar 

  6. Dong W (2002) On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty. Automatica 38:1475–1484

    Article  MATH  Google Scholar 

  7. Li Z, Ge SS, Ming A (2007) Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators. IEEE Trans Syst Man Cybern, Part B, Cybern 37(3):607–617

    Article  Google Scholar 

  8. Brooks R, Aryanada L, Edsinger A, Fitzpatrick P, Kemp CC, O’Reilly U, Torres-jara E, Varshavskaya P, Weber J (2004) Sensing and manipulating built-for-human environments. Int J Humanoid Robot 1(1):1–28

    Article  Google Scholar 

  9. Spong MW (1995) The swing up control problem for the acrobot. IEEE Control Syst 15:49–55

    Article  Google Scholar 

  10. Zhang M, Tarn T (2002) Hybrid control of the pendubot. IEEE/ASME Trans Mechatron 7(1):79–86

    Article  Google Scholar 

  11. Ge SS, Wang J, Lee TH, Zhou GY (2001) Adaptive robust stabilization of dynamic nonholonomic chained systems. J Robot Syst 18(3):119–133

    Article  MATH  Google Scholar 

  12. Ge SS, Wang Z, Lee TH (2003) Adaptive stabilization of uncertain nonholonomic systems by state and output feedback. Automatica 39(8):1451–1460

    Article  MATH  MathSciNet  Google Scholar 

  13. De Luca A, Oriolo G (2002) Trajectory planning and control for planar robots with passive last joint. Int J Robot Res 21(5–6):575–590

    Article  Google Scholar 

  14. Bergerman M, Lee C, Xu Y (1995) A dynamic coupling index for underactuated manipulators. J Robot Syst 12(10):693–707

    Article  MATH  Google Scholar 

  15. Isidori A, Marconi L, Serrani A (2003) Robust autonomous guidance: an internal model approach. Springer, New York

    Google Scholar 

  16. Tinos R, Terra MH, Ishihara JY (2006) Motion and force control of cooperative robotic manipulators with passive joints. IEEE Trans Control Syst Technol 14(4):725–734

    Article  Google Scholar 

  17. Ertugrul M, Kaynak O, Kerestecioglu F (2000) Gain adaptation in sliding mode control of robotic manipulators. Int J Syst Sci 31(9):1099–1106

    Article  MATH  Google Scholar 

  18. Alwi H, Edwards C (2008) Detection and fault-tolerant control of a civil aircraft using a sliding-mode-based scheme fault. IEEE Trans Control Syst Technol 16(3):499–510

    Article  Google Scholar 

  19. Ge SS, Hang CC, Lee TH, Zhang T (2002) Stable adaptive neural network control. Kluwer Academic, Boston

    MATH  Google Scholar 

  20. Su C, Stepanenko Y (1994) Robust motion/force control of mechanical systems with classical nonholonimic constraints. IEEE Trans Autom Control 39(3):609–614

    Article  MATH  MathSciNet  Google Scholar 

  21. Ge SS, Lee TH, Harris CJ (1998) Adaptive neural network control of robot manipulators. World Scientific, London

    Google Scholar 

  22. Wang ZP, Ge SS, Lee TH (2004) Robust motion/force control of uncertain holonomic/nonholonomic mechanical systems. IEEE/ASME Trans Mechatron 9(1):118–123

    Article  Google Scholar 

  23. Chang YC, Chen BS (2000) Robust tracking designs for both holonomic and nonholonomic constrained mechanical systems: adaptive fuzzy approach. IEEE Trans Fuzzy Syst 8:46–66

    Article  Google Scholar 

  24. Ge SS, Zhang J (2003) Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback. IEEE Trans Neural Netw 14(4):900–918

    Article  Google Scholar 

  25. Hahn W (1967) Stability of motion. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Li.

Additional information

This work is supported by Shanghai Pujiang Program under grant No. 08PJ1407000 and Natural Science Foundation of China under Grant Nos. 60804003 and 60935001, and New Faculty Foundation under Grant No. 200802481003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Yang, Y. & Wang, S. Adaptive Dynamic Coupling Control of Hybrid Joints of Human-Symbiotic Wheeled Mobile Manipulators with Unmodelled Dynamics. Int J of Soc Robotics 2, 109–120 (2010). https://doi.org/10.1007/s12369-010-0049-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-010-0049-8

Keywords

Navigation