Skip to main content
Log in

Mitigation of overcrowding in buses through bus planning

  • Original Paper
  • Published:
Public Transport Aims and scope Submit manuscript

Abstract

Mathematical models have been developed to address overcrowding in buses to incentivize their use. The models capture real-life requirements of bus planning, are computationally tractable, and easy to understand by decision makers. First, the current level of bus services on the given network is assessed. Then the models are developed to allocate the existing buses optimally and determine the minimum number of buses needed to satisfy the existing and future demand. Our results demonstrate that significant benefits can be obtained by the use of these models. The models also incorporate decision-making flexibility by allowing policy makers to adjust the policy parameters according to their requirements. As a result, they can be useful decision-making tools for city transport anywhere in the world, especially Delhi and other cities with similar problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal J, Mathew TV (2004) Transit route network design using parallel genetic algorithm. J Comput Civil Eng 18(3):248–256

    Article  Google Scholar 

  • Ahmad S, Balaban O, Doll CN, Dreyfus M (2013) Delhi revisited. Cities 31:641–653

    Article  Google Scholar 

  • Andaleeb SS, Haq M, Ahmed RI (2007) Reforming innercity bus transportation in a developing country: a passenger-driven model. J Public Transp 10(1):1–25

    Article  Google Scholar 

  • Baaj MH, Mahmassani HS (1995) Hybrid route generation heuristic algorithm for the design of transit networks. Transp Res Part C Emerg Technol 3(1):31–50

    Article  Google Scholar 

  • Badami MG (2001) A multiple-objectives approach to address motorized two-wheeled vehicle emissions in Delhi, India. The University of British Columbia Phd Thesis, (April), pp 1–341

  • Badami MG, Haider M (2007) An analysis of public bus transit performance in Indian cities. Transp Res Part A Policy Pract 41(10):961–981

    Article  Google Scholar 

  • Beevers SD, Carslaw DC (2005) The impact of congestion charging on vehicle emissions in London. Atmos Environ 39(1):1–5

    Article  Google Scholar 

  • Beirão G, Cabral JS (2007) Understanding attitudes towards public transport and private car: a qualitative study. Transp Policy 14(6):478–489

    Article  Google Scholar 

  • Bhattacharyya U, Salim DR (2015) Modeling the dynamic air transport industry aviation fuel demand in India. Int J Supply Chain Manag 4(2):35–54

    Google Scholar 

  • Blum JJ, Mathew TV (2011) Intelligent agent optimization of urban bus transit system design. J Comput Civil Eng 25(5):357–369

    Article  Google Scholar 

  • Borndörfer R, Grötschel M, Pfetsch ME (2007) A column-generation approach to line planning in public transport. Transp Sci 41(1):123–132

    Article  Google Scholar 

  • Cantwell M, Caulfield B, O’Mahony M (2009) Examining the factors that impact public transport commuting satisfaction. J Public Transp 12(2):1–21

    Article  Google Scholar 

  • Carrese S, Gori S (2002) An urban bus network design procedure. In: Transportation planning. Springer, New York, pp 177–195

  • Ceder A (1984) Bus frequency determination using passenger count data. Transp Res Part A Gen 18(5–6):439–453

    Article  Google Scholar 

  • Ceder A (2002) Urban transit scheduling: framework, review and examples. J Urban Plan Dev 128(4):225–244

    Article  Google Scholar 

  • Ceder A, Wilson NH (1986) Bus network design. Transp Res Part B Methodol 20(4):331–344

    Article  Google Scholar 

  • Census-India (2011) Census of India 2011 primary census abstract: NCT of Delhi

  • Cervero R, Kang CD (2011) Bus rapid transit impacts on land uses and land values in Seoul, Korea. Transp Policy 18(1):102–116

    Article  Google Scholar 

  • Chakroborty P, Wivedi T (2002) Optimal route network design for transit systems using genetic algorithms. Engin Optim 34(1):83–100

    Article  Google Scholar 

  • Chauhan V, Suman HK, Bolia N (2016) Binary logistic model for estimation of mode shift into Delhi Metro. Open Transp J 10(1):124–136

    Article  Google Scholar 

  • Cipriani E, Gori S, Petrelli M (2012) Transit network design: a procedure and an application to a large urban area. Transp Res Part C Emerg Technol 20(1):3–14

    Article  Google Scholar 

  • Das A, Parikh J (2004) Transport scenarios in two metropolitan cities in India: Delhi and Mumbai. Energy Convers Manage 45(15–16):2603–2625

    Article  Google Scholar 

  • DES (2014) Statistical abstract of Delhi. Directorate of Economics and Statistics, Government of NCT of Delhi

    Google Scholar 

  • DIMTS (2016). Welcome to Delhi Integrated Multi Modal Transit System Ltd. http://www.dimts.in/

  • Duarte A, Garcia C, Giannarakis G, Limão S, Polydoropoulou A, Litinas N (2010) New approaches in transportation planning: happiness and transport economics. NETNOMICS: Econ Res Electron Netw 11(1):5–32

    Article  Google Scholar 

  • Eboli L, Mazzulla G (2008) A stated preference experiment for measuring service quality in public transport. Transp Plan Technol 31(5):509–523

    Article  Google Scholar 

  • Eliasson J (2008) Lessons from the Stockholm congestion charging trial. Transp Policy 15(6):395–404

    Article  Google Scholar 

  • Fan W, Machemehl RB (2006) Optimal transit route network design problem with variable transit demand: genetic algorithm approach. J Transp Eng 132(1):40–51

    Article  Google Scholar 

  • Farahani RZ, Miandoabchi E, Szeto WY, Rashidi H (2013) A review of urban transportation network design problems. Eur J Oper Res 229(2):281–302

    Article  Google Scholar 

  • Fusco G, Gori S, Petrelli M (2002) A heuristic transit network design algorithm for medium size towns. In: Proceedings of the 13th mini-euro conference, Bari

  • Gilbert A (2008) Bus rapid transit: is Transmilenio a miracle cure? Transp Rev 28(4):439–467

    Article  Google Scholar 

  • Giuliano G (1992) Transportation demand management: promise or panacea? J Am Plan Assoc 58(3):327–335

    Article  Google Scholar 

  • Goel R, Tiwari G (2016) Access–egress and other travel characteristics of metro users in Delhi and its satellite cities. IATSS Res 39:164–172

    Article  Google Scholar 

  • Goldman T, Gorham R (2006) Sustainable urban transport: four innovative directions. Technol Soc 28(1–2):261–273

    Article  Google Scholar 

  • Goyal SK, Ghatge SV, Nema PS, Tamhane SM (2006) Understanding urban vehicular pollution problem vis-a-vis ambient air quality–case study of a megacity (Delhi, India). Environ Monit Assess 119(1–3):557–569

    Article  Google Scholar 

  • Guihaire V, Hao JK (2008) Transit network design and scheduling: a global review. Transp Res Part A Policy Pract 42(10):1251–1273

    Article  Google Scholar 

  • Han SS (2010) Managing motorization in sustainable transport planning: the Singapore experience. J Transp Geogr 18(2):314–321

    Article  Google Scholar 

  • Han AF, Wilson NH (1982) The allocation of buses in heavily utilized networks with overlapping routes. Transp Res Part B Methodol 16(3):221–232

    Article  Google Scholar 

  • Ibeas A, Alonso B, dell’Olio L, Moura JL (2013) Bus size and headways optimization model considering elastic demand. J Transp Eng 140(4):04013021

    Article  Google Scholar 

  • Ibrahim MF (2003) Improvements and integration of a public transport system: the case of Singapore. Cities 20(3):205–216

    Article  Google Scholar 

  • Jain D, Tiwari G (2016) How the present would have looked like? Impact of non-motorized transport and public transport infrastructure on travel behavior, energy consumption and CO2 emissions–Delhi, Pune and Patna. Sustain Cities Soc 22:1–10

    Article  Google Scholar 

  • Jain S, Aggarwal P, Kumar P, Singhal S, Sharma P (2014) Identifying public preferences using multi-criteria decision making for assessing the shift of urban commuters from private to public transport: a case study of Delhi. Transp Res Part F Traffic Psychol Behav 24:60–70

    Article  Google Scholar 

  • Katz D, Rahman MM (2010) Levels of overcrowding in bus system of Dhaka, Bangladesh. Transp Res Rec 2143(1):85–91

    Article  Google Scholar 

  • Kennedy CA (2002) A comparison of the sustainability of public and private transportation systems: study of the Greater Toronto Area. Transportation 29:459–493

    Article  Google Scholar 

  • Khanna P, Jain S, Sharma P, Mishra S (2011) Impact of increasing mass transit share on energy use and emissions from transport sector for National Capital Territory of Delhi. Transp Res Part D Transp Environ 16(1):65–72

    Article  Google Scholar 

  • Kottenhoff K, Freij KB (2009) The role of public transport for feasibility and acceptability of congestion charging–the case of Stockholm. Transp Res Part A Policy Pract 43(3):297–305

    Article  Google Scholar 

  • Koutsopoulos HN, Odoni A, Wilson NH (1985) Determination of headways as a function of time varying characteristics on a transit network. Comput Sched Public Transp 2:391–413

    Google Scholar 

  • Lau HC, Sim M, Teo KM (2003) Vehicle routing problem with time windows and a limited number of vehicles. Eur J Oper Res 148(3):559–569

    Article  Google Scholar 

  • Lei D, Yan X (2007) Urban transit route network design problem using tabu search algorithm. In: International conference on transportation engineering 2007, pp 3929–3934

  • Li Z, Hensher DA (2011) Crowding and public transport: a review of willingness to pay evidence and its relevance in project appraisal. Transp Policy 18(6):880–887

    Article  Google Scholar 

  • Li Z, Hensher DA (2013) Crowding in public transport: a review of objective and subjective measures. J Public Transp 16(2):107–134

    Article  Google Scholar 

  • Liu H, Yang X (2007) Bus transit route network design using genetic algorithm. In: International conference on transportation engineering 2007, pp 1135–1141

  • Liu C, Zheng Z (2013) Public acceptance towards congestion charge: a case study of Brisbane. Proc Soc Behav Sci 96:2811–2822

    Article  Google Scholar 

  • Mishra S, Mathew TV, Khasnabis S (2010) Single-stage integer programming model for long-term transit fleet resource allocation. J Transp Eng 136(4):281–290

    Article  Google Scholar 

  • Nahry SS (2000) Optimal scheduling of public transport fleet at network level. J Adv Transp 34(2):297–323

    Article  Google Scholar 

  • Nesheli MM, Ceder AA, Brissaud R (2017) Public transport service-quality elements based on real-time operational tactics. Transportation 44(5):957–975

    Article  Google Scholar 

  • Nikitas A, Karlsson M (2015) A worldwide state-of-the-art analysis for bus rapid transit: looking for the success formula. J Public Transp 18(1):1–33

    Article  Google Scholar 

  • Parra D, Gomez L, Pratt M, Sarmiento OL, Mosquera J, Triche E (2007) Policy and built environment changes in Bogotá and their importance in health promotion. Indoor Built Environ 16(4):344–348

    Article  Google Scholar 

  • Pattnaik SB, Mohan S, Tom VM (1998) Urban bus transit route network design using genetic algorithm. J Transp Eng 124(4):368–375

    Article  Google Scholar 

  • Polzin SE, Baltes MR (2002) Bus rapid transit: a viable alternative? J Public Transp 5(2):47–70

    Article  Google Scholar 

  • Pucher J, Korattyswaropam N, Mittal N, Ittyerah N (2005) Urban transport crisis in India. Transp Policy 12(3):185–198

    Article  Google Scholar 

  • Raux C, Souche S, Pons D (2012) The efficiency of congestion charging: some lessons from cost-benefit analyses. Res Transp Econ 36(1):85–92

    Article  Google Scholar 

  • Rozycki C Von, Koeser H, Schwarz H (2003) Ecology profile of the german high-speed rail passenger transport system, ICE. Int J Life Cycle Assess 8(2):83–91

    Article  Google Scholar 

  • Salzborn FJ (1972) Optimum bus scheduling. Transp Sci 6(2):137–148

    Article  Google Scholar 

  • Silman LA, Barzily Z, Passy U (1974) Planning the route system for urban buses. Comput Oper Res 1(2):201–211

    Article  Google Scholar 

  • Singh SK (2006) Future mobility in India: implications for energy demand and CO2 emission. Transp Policy 13(5):398–412

    Article  Google Scholar 

  • Suman HK, Bolia NB (2019) A review of service assessment attributes and improvement strategies for public transport. Transp Dev Econ 5(1):1

    Article  Google Scholar 

  • Suman HK, Bolia NB, Tiwari G (2016) Analysis of the factors influencing the use of public buses in Delhi. J Urban Plan Dev 142(3):04016003

    Article  Google Scholar 

  • Suman HK, Bolia NB, Tiwari G (2017) Comparing public bus transport service attributes in Delhi and Mumbai: policy implications for improving bus services in Delhi. Transp Policy 56:63–74

    Article  Google Scholar 

  • Suman HK, Bolia NB, Tiwari G (2018) Perception of potential bus users and impact of feasible interventions to improve quality of bus services in Delhi. Case Stud Transp Policy 6(4):591–602

    Article  Google Scholar 

  • Thynell M, Mohan D, Tiwari G (2010) Sustainable transport and the modernisation of urban transport in Delhi and Stockholm. Cities 27(6):421–429

    Article  Google Scholar 

  • Tirachini A, Hensher DA, Rose JM (2013) Crowding in public transport systems: effects on users, operation and implications for the estimation of demand. Transp Res Part A Policy Pract 53:36–52

    Article  Google Scholar 

  • Tiwari G (2009) Public transport research challenges in India. Indian Institute of Technology, Delhi

    Google Scholar 

  • Van Nes R, Hamerslag R, Immers BH (1988) Design of public transport networks. Transp Res Rec 1202:74–83

    Google Scholar 

  • Wall G, McDonald M (2007) Improving bus service quality and information in Winchester. Transp Policy 14(2):165–179

    Article  Google Scholar 

  • Wan QK, Lo HK (2003) A mixed integer formulation for multiple-route transit network design. J Math Model Algorithms 2(4):299–308

    Article  Google Scholar 

  • Yu B, Yang Z, Yao J (2010) Genetic algorithm for bus frequency optimization. J Transp Eng 136(6):576–583

    Article  Google Scholar 

  • Zhang YJ, Peng HR, Liu Z, Tan W (2015) Direct energy rebound effect for road passenger transport in China: a dynamic panel quantile regression approach. Energy Policy 87:303–313

    Article  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the Department of Science and Technology, Government of India with grant number RS/FTP/ETA/0025/2011. We thank the Delhi Integrated Multi-Modal Transit System (DIMTS) for providing the ticketing data. We also thank Maansi Gupta and Abhishek Bhatnagar for their contributions. We would also like to express our gratitude to Rama Shankar and Premchand for providing logistical support in data collection, and to all the experts and organizations that participated in our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Kumar Suman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suman, H.K., Bolia, N.B. Mitigation of overcrowding in buses through bus planning. Public Transp 11, 159–187 (2019). https://doi.org/10.1007/s12469-019-00197-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12469-019-00197-x

Keywords

Navigation