Skip to main content
Log in

Partial identification and control of MIMO systems via switching linear reduced-order models under weak stimulations

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

In closed loop identification of an unknown control system, the stability is a big concern particularly when the system does not proceed with sufficient excitation. In this paper, under insufficient excitation of the system, identification and control are investigated by employing Evolving Linear Models (ELMs). It is explained that under weak stimulation, linear correlations between input and output signals and their derivations are occurred. Removing some correlated variables through the time, an equivalent reduced order model of the original system is appeared, which can be identified as an ELM. Defining control law based on the sliding mode control (SMC) and using appropriate adaptation rules for parameters of the model, the tracking errors converge to zero and the stability of the system is guaranteed. Then, convergence of the parameters to their true values is studied and discussed. Different simulations are given to demonstrate the efficacy of the proposed closed loop identification approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angelov P, Sadeghi Tehran P, Ramezani R (2011) An approach to automatic real time novelty detection, object identification, and tracking in video streams based on recursive density estimation and evolving Takagi–Sugeno fuzzy systems International. J Intell Syst 26:189–205

    Article  MATH  Google Scholar 

  • Äström K, Wittenmark B (1989) Adaptive control. Addison-Wesley, New York

    Google Scholar 

  • Briot S, Bonev I (2009) Pantopteron: a new fully decoupled 3DOF translational parallel robot for pick-and-place applications. J Mech Robot 1:021001

    Article  Google Scholar 

  • Cho N, Shin H-S, Kim Y, Tsourdos A (2017) Composite model reference adaptive control with parameter convergence under finite excitation. IEEE Trans Autom Control. https://doi.org/10.1109/TAC.2017.2737324

  • Fu M, Barmish B (1986) Adaptive stabilization of linear systems via switching control. IEEE Trans Autom Control 31:1097–1103

    Article  MathSciNet  MATH  Google Scholar 

  • Goethals I, Pelckmans K, Suykens JA, De Moor B (2005) Identification of MIMO Hammerstein models using least squares support. Vector Mach Autom 41:1263–1272

    MathSciNet  MATH  Google Scholar 

  • Hou YL, Zeng DX, Zhang ZY, Wang CM, Hu XZ (2012) A novel two degrees of freedom rotational decoupled parallel mechanism. Appl Mech Mater 215–216:293–296

    Article  Google Scholar 

  • Hovland G, Choux M, Murray M, Brogardh T (2007) Benchmark of the 3-dof gantry-tau parallel kinematic machine. In: Robotics and automation, 2007 IEEE international conference, pp 535–542

  • Hwang C, Guo T-Y (1984) Transfer-function matrix identification in MIMO systems via shifted legendre polynomials. Int J Control 39:807–814

    Article  MathSciNet  MATH  Google Scholar 

  • Ioannou PA, Sun J (1996) Robust adaptive control, vol 1. PTR Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  • Ivanov AV, Orlovsky IV (2014) Asymptotic properties of linear regression parameter estimator in the case of long-range dependent regressors and noise. Theory Stoch Process 19:1–10

    MathSciNet  MATH  Google Scholar 

  • Jahandari S, Kalhor A, Araabi BN (2016) A self tuning regulator design for nonlinear time varying systems based on evolving linear models. Evol Syst 7:159–172

    Article  Google Scholar 

  • Kalhor A, Araabi BN, Lucas C (2010) An online predictor model as adaptive habitually linear and transiently nonlinear model. Evol Syst 1:29–41

    Article  Google Scholar 

  • Kalhor A, Araabi BN, Lucas C (2012) A new systematic design for habitually linear evolving TS fuzzy model. Expert Syst Appl 39:1725–1736

    Article  Google Scholar 

  • Leskens M, Van Kessel L, Van den Hof P (2002) MIMO closed-loop identification of an. MSW Inciner Control Eng Pract 10:315–326

    Article  Google Scholar 

  • Leung Lai T, Zong Wei C (1986) On the concept of excitation in least squares identification and adaptive control stochastics. Int J Probab Stoch Process 16:227–254

    MATH  Google Scholar 

  • Li W, Zhang J, Gao F, P-CUBE (2006) A decoupled parallel robot only with prismatic pairs. In: Mechatronic and embedded systems and applications, Proceedings of the 2nd IEEE/ASME International conference on 2006, pp 1–4

  • Lughofer E (2013) On-line assurance of interpretability criteria in evolving fuzzy systems–achievements, new concepts and open issues. Inf Sci 251:22–46

    Article  MathSciNet  Google Scholar 

  • Lughofer E, Cernuda C, Kindermann S, Pratama M (2015) Generalized smart evolving fuzzy systems. Evol Syst 6:269–292

    Article  Google Scholar 

  • Mårtensson B (1985) The order of any stabilizing regulator is sufficient a priori information for adaptive stabilization. Syst Control Lett 6:87–91

    Article  MathSciNet  Google Scholar 

  • Mayne DQ, Rawlings JB, Rao CV, Scokaert PO (2000) Constrained model predictive control. Stab Optim Autom 36:789–814

    MathSciNet  MATH  Google Scholar 

  • Miller DE, Davison EJ (1989) An adaptive controller which provides Lyapunov stability. IEEE Trans Autom Control 34:599–609

    Article  MathSciNet  MATH  Google Scholar 

  • Miller DE, Davison EJ (1991) An adaptive controller which provides an arbitrarily good transient and steady-state response. IEEE Trans Autom Control 36:68–81

    Article  MathSciNet  MATH  Google Scholar 

  • Ng T, Goodwin G, Anderson B (1977) Identifiability of MIMO linear dynamic systems operating in closed loop. Automatica 13:477–485

    Article  MATH  Google Scholar 

  • Pan Z, Basar T (1996) Parameter identification for uncertain linear systems with partial state measurements under an H ∞ criterion. IEEE Trans Autom Control 41:1295–1311

    Article  MathSciNet  MATH  Google Scholar 

  • Pedrycz W (2010) Evolvable fuzzy systems: some insights and challenges. Evol Syst 1:73–82

    Article  Google Scholar 

  • Precup R-E, Filip H-I, Rădac M-B, Petriu EM, Preitl S, Dragoş C-A (2014) Online identification of evolving Takagi–Sugeno–Kang fuzzy models for crane systems. Appl Soft Comput 24:1155–1163

    Article  Google Scholar 

  • Qin SJ (1993) Partial least squares regression for recursive system identification. In: Decision and control, proceedings of the 32nd IEEE conference on 1993, pp 2617–2622

  • Qin SJ, Badgwell TA (2003) A survey of industrial model predictive control technology. Control Eng Pract 11:733–764

    Article  Google Scholar 

  • Rao GP, Sivakumar L (1981) Transfer function matrix identification in MIMO systems via Walsh functions. Proc IEEE 69:465–466

    Article  Google Scholar 

  • SAHA DC, RAO GP (1982) Transfer function matrix identification in MIMO systems via Poisson moment functionals. Int J Control 35:727–738

    Article  MATH  Google Scholar 

  • Sharifzadeh M, Arian A, Salimi A, Masouleh MT, Kalhor A (2017) An experimental study on the direct and indirect dynamic identification of an over-constrained 3-DOF decoupled parallel mechanism. Mech Mach Theory 116:178–202

    Article  Google Scholar 

  • Vuthandam P, Nikolaou M (1997) Constrained MPCI: a weak persistent excitation approach. AIChE J 43:2279–2288

    Article  Google Scholar 

  • Xu HY, Baird CR (1990) An identification technique for adaptive systems in the case of poor excitation. In: Bensoussan A, Lions JL (eds) Analysis and optimization of systes. Springer, Berlin, Heidelberg, pp 467–476

    Chapter  Google Scholar 

  • Xu J-X, Hashimoto H (1996) VSS theory-based parameter identification scheme for MIMO systems. Automatica 32:279–284

    Article  MathSciNet  MATH  Google Scholar 

  • Yahyapour I, Hasanvand M, Masouleh MT, Yazdani M, Tavakoli S (2013) On the inverse dynamic problem of a 3-PRRR parallel manipulator, the tripteron. In: Robotics and mechatronics (ICRoM), 2013 first RSI/ISM international conference on 2013. IEEE, pp 390–395

  • Zeng D, Huang Z, Lu W (2007) A family of novel 2 DOF rotational decoupled parallel mechanisms. In: Mechatronics and automation, 2007. ICMA 2007. International conference on 2007. IEEE, pp 2478–2483

  • Zhang L, Shi P (2008) l2/L ∞ model reduction for switched LPV systems with average dwell time. IEEE Trans Autom Control 53:2443–2448

    Article  MATH  Google Scholar 

  • Zhang L, Shi P, Basin M (2008) Model reduction for switched linear discrete-time systems with polytopic uncertainties and arbitrary switching. IFAC Proc Vol 41:7666–7671

    Article  Google Scholar 

  • Zhu YC (1989) Black-box identification of mimo transfer functions: asymptotic properties of prediction error models. Int J Adapt Control Signal Process 3:357–373

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Kalhor.

Appendices

Appendix a

Theorem 1

Regarding to the MIMO system described in Eq. (1) and based on A2, identification of the basic model is guaranteed. Also, the closed-loop system remains stable during identification procedures.

Proof

Consider following positive definite Lyapunov function including the sliding vector and parameters estimation errors (PEEs):

$$V\left( t \right)=\frac{1}{2}\left[ {{S^T}S+\mathop \sum \limits_{{q=1}}^{N} \tilde {\theta }_{q}^{T}\left( t \right)P_{q}^{{ - 1}}\left( t \right){{\tilde {\theta }}_q}\left( t \right)} \right]$$
(26)

where

$$\begin{gathered} \tilde {\theta }_{q}^{T}\left( t \right)=\left[ {\tilde {a}_{q}^{T},\tilde {b}_{q}^{T}} \right] \end{gathered}$$
(27)

Regarding to the differential equations in Eq. (2), the derivative of the Lyapunov function, formulated in Eq. (26), is computed as follows:

$$\dot {V}\left( t \right)=\frac{1}{2}\left[ {2{S^T}\dot {S}+2\mathop \sum \limits_{{q=1}}^{N} \tilde {\dot {\theta }}_{q}^{T}\left( t \right)P_{q}^{{ - 1}}\left( t \right){{\tilde {\theta }}_q}\left( t \right)+\mathop \sum \limits_{{q=1}}^{N} \tilde {\theta }_{q}^{T}\left( t \right)\dot {P}_{q}^{{ - 1}}\left( t \right){{\tilde {\theta }}_q}\left( t \right)} \right]$$
(28)

Or

$$\dot {V}\left( t \right)=\frac{1}{2}\left[ {2{S^T}\dot {S} - 2\mathop \sum \limits_{{q=1}}^{N} \hat {\dot {\theta }}_{q}^{T}\left( t \right)P_{q}^{{ - 1}}\left( t \right){{\tilde {\theta }}_q}\left( t \right)+\mathop \sum \limits_{{q=1}}^{N} \tilde {\theta }_{q}^{T}\left( t \right)\dot {P}_{q}^{{ - 1}}\left( t \right){{\tilde {\theta }}_q}\left( t \right)} \right]$$
(29)

By substituting the derivative of sliding vector from Eq. (14), the following formula is obtained:

$$\dot{V}\left( t \right) = \frac{1}{2}\left[ { - 2S^{T} \left[ {\begin{array}{*{20}c} {\tilde{b}_{1}^{T} } \\ \vdots \\ {\tilde{b}_{N}^{T} } \\ \end{array} } \right]\underline{\tilde u } + 2S^{T} \left[ {\begin{array}{*{20}c} {\tilde a _{1}^{T}~ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{y} _{1} } \\ \vdots \\ {\tilde a _{N}^{T}~ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{y} _{N} } \\ \end{array} } \right] - 2\mathop \sum \limits_{{q = 1}}^{N} \hat{\dot{\theta }}_{q}^{T} \left( t \right)P_{q}^{{ - 1}} \left( t \right)\tilde{\theta }_{q} \left( t \right) + \mathop \sum \limits_{{q = 1}}^{N} \tilde{\theta }_{q}^{T} \left( t \right)\dot{P}_{q}^{{ - 1}} \left( t \right)\tilde{\theta }_{q} (t)} \right] - S^{T} B\eta ~sign\left( S \right).$$
(30)

Equation (30) can be written in summation format as follows:

$$\dot {V}\left( t \right)=\mathop \sum \limits_{{q=1}}^{N} \left( {{s_q}\left[ {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{y} _{q}^{T}, - ~{{\hat {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} }}^T}} \right] - \left[ {\hat {\dot {a}}_{q}^{T}\left( t \right),~\hat {\dot {b}}_{q}^{T}\left( t \right)} \right]P_{q}^{{ - 1}}\left( t \right)} \right){\tilde {\theta }_q}\left( t \right)+\frac{1}{2}\mathop \sum \limits_{{q=1}}^{N} \tilde {\theta }_{q}^{T}\left( t \right)\dot {P}_{q}^{{ - 1}}\left( t \right){\tilde {\theta }_q}\left( t \right) - \mathop \sum \limits_{{q=1}}^{N} \left( {{\eta _q}\mathop \sum \limits_{{j=1}}^{N} {b_{qj}}{s_q}~sign\left( {{s_j}} \right)} \right).$$
(31)

According to the design parameter, following inequality can be obtained:

$$\dot {V}\left( t \right) \leq \mathop \sum \limits_{{i=1}}^{N} \left( {{s_q}\left[ {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{y} _{q}^{T},~ - {{\hat {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} }}^T}} \right] - \left[ {\hat {\dot {a}}_{q}^{T}(t),~\hat {\dot {b}}_{q}^{T}(t)} \right]P_{q}^{{ - 1}}(t)} \right){\tilde {\theta }_q}\left( t \right)+\frac{1}{2}\mathop \sum \limits_{{q=1}}^{N} \hat {\theta }_{q}^{T}\left( t \right)\dot {P}_{q}^{{ - 1}}\left( t \right){\tilde {\theta }_q}\left( t \right) - \sum\nolimits_{{q=1}}^{N} \left| {{\eta _q}} \right|\left| {{s_q}} \right| \left(\left| {{b_{qq}}} \right| - \sum\nolimits_{{j=1,j \ne q}}^{N} {\left| {{b_{qj}}} \right|} \right).$$
(32)

Now, by using the given adaptation rules in Eq. (24), it is concluded that:

$$\dot {V}\left( t \right) \leq - \frac{1}{2}\mathop \sum \limits_{{q=1}}^{N} {\alpha _q}\tilde {\theta }_{q}^{T}\left( t \right)P_{q}^{{ - 1}}\left( t \right){\tilde {\theta }_q}\left( t \right) - \mathop \sum \limits_{{q=1}}^{N} \left( {{\gamma _q} - \frac{1}{2}} \right)\tilde {\theta }_{q}^{T}\left( t \right){\Phi _q}\left( t \right){\Phi _q}^{T}\left( t \right){\tilde {\theta }_q}\left( t \right) - \mathop \sum \limits_{{q=1}}^{N} \left| {{\eta _q}} \right|\left| {{s_q}} \right|\left(\left| {{b_{qq}}} \right| - \mathop \sum \limits_{{j=1,j \ne q}}^{N} \left| {{b_{qj}}} \right|\right).$$
(33)

By choosing \(~{\gamma _q}>\frac{1}{2}~\), \({\alpha _q}>0\) and according to A2:

$$\dot {V}\left( t \right) \leq - \frac{1}{2}\mathop \sum \limits_{{q=1}}^{N} {\alpha _q}\tilde {\theta }_{q}^{T}\left( t \right)P_{q}^{{ - 1}}\left( t \right){\tilde {\theta }_q}\left( t \right) - \mathop \sum \limits_{{q=1}}^{N} \left( {{\gamma _q} - \frac{1}{2}} \right)\tilde {\theta }_{q}^{T}\left( t \right){\Phi _q}\left( t \right){\Phi _q}^{T}\left( t \right){\tilde {\theta }_q}\left( t \right) - \mathop \sum \limits_{{q=1}}^{N} \left| {{\eta _q}} \right|\left| {{b_{qq}}} \right|\left| {{s_q}} \right|.$$
(34)

Finally, it is concluded that:

$$\begin{gathered} \dot {V}\left( t \right) \leq - {W_3}\left( {||S||,||\tilde {\theta }||} \right)= - \left( {\frac{1}{2}a\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\sigma } ||\tilde {\theta }|{|^2}+\delta ||S||} \right)<0 \hfill \\ {~} \hfill \\ 0<a=\mathop {\hbox{min} }\limits_{{\forall q=1, \cdots ,N}} {\alpha _q},0<~\delta =\mathop {\hbox{min} }\limits_{{\forall q=1, \cdots ,N}} \left( {\left| {{\eta _q}} \right|\left| {{b_{qq}}} \right|} \right). \hfill \\ \end{gathered}$$
(35)

The derivative of Lyapunov function remains negative definite for PEE and the sliding vector. Hence, based on the Lyapunov theory, \(~{W_3}\left( {||S||,||\tilde {\theta }||} \right) \to 0,\) asymptotically. As the result, estimated parameters of the basic model converge to their true values and output signals converge asymptotically to their corresponding desired signals.

Appendix b

Theorem 1′

After switching, by using the model formulated as Eq. (9), the closed-loop system under identification remains stable. Assumptions A1, A2, A3 are stablished in this theorem.

The Lyapunov function stated in Eq. (15) is suitable for proving this theorem. Besides the system energy in sliding surfaces, it shows the energy of the identification error of R-OM in the input–output space. So the derivative of this function should be negative definite in order to vanish identification errors.

$$\dot {V}\left( t \right)=\frac{1}{2}\left[ {2{S^T}\dot {S} - 2\hat {\dot {\theta }}_{i}^{{'T}}\left( t \right)P_{i}^{{'-1}}\left( t \right)\tilde {\theta }_{i}^{'}\left( t \right)+\tilde {\theta }_{i}^{{'T}}\left( t \right)\dot {P}_{i}^{{' - 1}}\left( t \right)\tilde {\theta }_{i}^{'}\left( t \right) - 2\mathop \sum \limits_{{q \ne i}}^{N} \hat {\dot {\theta }}_{q}^{T}\left( t \right)P_{q}^{{ - 1}}\left( t \right){{\tilde {\theta }}_q}\left( t \right)+\mathop \sum \limits_{{q \ne i}}^{N} \tilde {\theta }_{q}^{T}\left( t \right)\dot {P}_{q}^{{ - 1}}\left( t \right){{\tilde {\theta }}_q}\left( t \right)} \right]$$
(36)

By substitution of the derivative of the sliding vector in Eq. (14), it is calculated:

$$\dot{V}\left( t \right) = \frac{1}{2}\left[ { - 2S^{T} \left[ {\begin{array}{*{20}c} {\tilde{b}_{1}^{T} } \\ {\begin{array}{*{20}c} \vdots \\ {\tilde{b}_{i}^{{\prime T}} } \\ \vdots \\ \end{array} } \\ {\tilde{b}_{N}^{T} } \\ \end{array} } \right]\hat{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} } + 2S^{T} \left[ {\begin{array}{*{20}c} {a_{1}^{T} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{y} _{1} } \\ {\begin{array}{*{20}c} \vdots \\ {a_{1}^{{\prime k^{T} }} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{y} _{{ik}} } \\ \vdots \\ \end{array} } \\ {a_{N}^{T} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{y} _{1} } \\ \end{array} } \right] - 2\hat{\dot{\theta }}_{i}^{{\prime T}} \left( t \right)P_{i}^{{\prime - 1}} \left( t \right)\tilde{\theta }_{i}^{\prime } \left( t \right) + \theta _{i}^{{\prime T}} \left( t \right)\dot{P}_{i}^{{\prime - 1}} (t)\tilde{\theta }_{i}^{\prime } (t) - 2\sum\nolimits_{{q \ne i}}^{N} {\hat{\dot{\theta }}_{q}^{T} } \left( t \right)P_{q}^{{ - 1}} \left( t \right)\tilde{\theta }_{q} \left( t \right) + \sum\nolimits_{{q \ne i}}^{N} {\tilde{\theta }_{q}^{T} } \left( t \right)\dot{P}_{q}^{{ - 1}} \left( t \right)\tilde{\theta }_{q} (t)} \right] - S^{T} B^{\prime } \eta ~\text{sign} \left( S \right).$$
(37)

By imposing adaptation rules and doing some calculations, it can be calculated:

$$\dot {V}\left( t \right) \leq - \frac{1}{2}{\alpha _i}\tilde {\theta }_{i}^{{\prime T}}\left( t \right)P_{i}^{{\prime - 1}}\left( t \right)\tilde {\theta }_{i}^{\prime }\left( t \right) - \left( {{\gamma _i} - \frac{1}{2}} \right)\tilde {\theta }_{i}^{{'T}}\left( t \right)\Phi _{i}^{\prime }\left( t \right)\Phi _{i}^{{\prime T}}\left( t \right)\tilde {\theta }_{i}^{\prime }(t) - \frac{1}{2}\sum\limits_{{q \ne i}}^{N} {{\alpha _q}\tilde {\theta }_{q}^{T}} \left( t \right)P_{q}^{{ - 1}}\left( t \right){\tilde {\theta }_q}\left( t \right) - \sum\limits_{{q \ne i}}^{N} {\left( {{\gamma _q} - \frac{1}{2}} \right)} \tilde {\theta }_{q}^{T}\left( t \right){\Phi _q}\left( t \right){\Phi _q}^{T}\left( t \right){\tilde {\theta }_q}\left( t \right) - \sum\limits_{{q \ne i}}^{N} {\left| {{\eta _q}} \right|\left| {{b_{qq}}} \right|\left| {{S_q}} \right| - \left| {{\eta _i}} \right|\left| {b_{{ii}}^{\prime }} \right|\left| {{S_i}} \right|} .$$
(38)

The whole calculations and steps of proof are the same as “Appendix a”. Even if \({\tau _2}\) is finite and identifier cannot converges to real parameters, but still the energy of the sliding surfaces decreases and the closed-loop system remains stable. It is also concluded if \({\tau _2}\) is far enough from the switching moment, parameters of identified R-OM can converge to their basic values in R-OM.

$$\dot {V}\left( t \right) \leq - {W_3}\left( {||S||,||{{\tilde {\theta }}^\prime }||} \right)= - \left( {\frac{1}{2}a{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\sigma } }^\prime }||{{\tilde {\theta }}^\prime }|{|^2}+\delta ||S||} \right)<0$$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari-Rad, S., Kalhor, A. & Araabi, B.N. Partial identification and control of MIMO systems via switching linear reduced-order models under weak stimulations. Evolving Systems 10, 111–128 (2019). https://doi.org/10.1007/s12530-017-9214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-017-9214-8

Keywords

Navigation