Skip to main content
Log in

Stride towards aging problem in face recognition by applying hybrid local feature descriptors

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

In our proposed research, we developed a discriminative model for addressing the challenge of face recognition with respect to age variation by utilizing periocular region. Initially, we represent each face by using a densely sampled local feature description technique, in which multi-block local binary pattern (MB-LBP) and weber local descriptor (WLD) are adopted as the local descriptors. In this approach, extract the feature of entire facial image by the aid of both local descriptors. Since the feature space of both the MBLBP and WLD is vast, we develop an advanced multi-feature discriminant analysis to process these two local feature spaces in a unified framework. By random sampling, the training set as well as the feature space, multiple linear discriminant analysis (LDA) based K-nearest neighbor (K-NN) classifiers are constructed and then combined to generate a robust decision via a fusion rule. In the proposed method, the MORPH and FG-NET datasets are utilized for the experimental evaluation. In the MORPH dataset, our proposed method is compared with existing methods such as SIFT, Multi scale method based on morphology, signed grey level difference (SD), LBP, scale-invariant classification, gabor, hidden factor analysis (HFA), modified HFA (MHFA) and learning discriminant face descriptors (LFD). The accuracy of face and periocular region for our method is 98.83% and 98.32%. The existing method such as sparse null linear discriminate analysis (SNLDA), direct LDA, principle component analysis + LDA, cross-age reference coding (CARC), HFA and sparse representation classification (SRC) are compared with the proposed method and obtained the recognition rate is 96.74% and 97.89%. In parameter evaluation we get following values: recall is 93.34% and 96.56%, precision is 95.49% and 94.76%, F-score is 94.40% and 92.17% for face and periocular region. In the FG-NET dataset, our proposed method is compared with existing methods such as SIFT, LBP, MLBP, MWLD and multi-feature discriminant analysis (MFDA). The average accuracy in face region and the periocular region is 65.32% and 68.92%. Our proposed method produce recognition rate as 98.11% and 97.87% for face region and periocular region when compared with SNLDA, DLDA, SRC, PCA + LDA and Coupled Auto-encoder Networks (CAN). In parameter evaluation we get following values: recall is 90.85% and 91.65%, precision is 92.35% and 94.56%, F-score is 91.59% and 90.84% for face and periocular region. Our Method has error rate as 1.7% and our error rate is less when contrasted with Agarwal et al. (21%), Wallis et al. (11.5%), Wang et al. (4.515%) and Leibe et al. (2.5%) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agarwal S, Awan A, Roth D (2004) Learning to detect objects in images via a sparse, part-based representation. IEEE Trans Pattern Anal Mach Intell 26(11):1475–1490

    Article  Google Scholar 

  • Alvi FB, Pears R (2017) A composite spatio-temporal modeling approach for age invariant face recognition. Expert Syst Appl 72:383–394

    Article  Google Scholar 

  • Alvi FB, Pears R, Kasabov N (2017) An evolving spatio-temporal approach for gender and age group classification with spiking neural networks. Evol Syst. https://doi.org/10.1007/s12530-017-9175-y

    Article  Google Scholar 

  • Bekhouche SE, Ouafi A, Benlamoudi A, Taleb-Ahmed A, Hadid A (2015) Facial age estimation and gender classification using multi level local phase quantization. In: Control, Engineering & Information Technology (CEIT), 2015 3rd international conference, Tlemcen, Algeria, 2015

  • Bereta M, Karczmarek P, Pedrycz W, Reformat M (2013a) Local descriptors in application to the aging problem in face recognition. Pattern Recogn 46(10):2634–2646

    Article  Google Scholar 

  • Bereta M, Pedrycz W, Reformat M (2013b) Local descriptors and similarity measures for frontal face recognition: a comparative analysis. J Vis Commun Image Represent 24(8):1213–1231

    Article  Google Scholar 

  • Best-Rowden L, Jain AK (2017) Longitudinal study of automatic face recognition. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2017.2652466

    Article  Google Scholar 

  • Chakraborty S, Singh SK, Chakraborty P (2017) Local directional gradient pattern: a local descriptor for face recognition. Multimedia Tools Appl 76(1):1201–1216

    Article  Google Scholar 

  • Chen B-C, Chen C-S, Hsu WH (2015) Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset. IEEE Trans Multimedia 17(6):804–815. https://doi.org/10.1109/tmm.2015.2420374

    Article  Google Scholar 

  • Chen JH, Su MC, Cao R, Hsu SC, Lu JC (2017a) A self organizing map optimization based image recognition and processing model for bridge crack inspection. Autom Construction 73:58–66

    Article  Google Scholar 

  • Chen Z, Huang W, Lv Z (2017b) Towards a face recognition method based on uncorrelated discriminant sparse preserving projection. Multimedia Tools Appl 76(17):17669–17683

    Article  Google Scholar 

  • Choi SE, Jo J, Lee S, Choi H, Kim IJ, Kim J (2017) Age face simulation using aging functions on global and local features with residual images. Expert Syst Appl 80:107–125

    Article  Google Scholar 

  • Dong Y, Feng J, Yang C, Wang X, Zhen L, Pu J (2017) Multi-scale counting and difference representation for texture classification. Vis Comput. https://doi.org/10.1007/s00371-017-1415-4

    Article  Google Scholar 

  • Dora L, Agrawal S, Panda R, Abraham A (2017) An evolutionary single Gabor kernel based filter approach to face recognition. Eng Appl Artif Intell 62:286–301

    Article  Google Scholar 

  • Duan Y, Lu J, Feng J, Zhou J (2017) Context-aware local binary feature learning for face recognition. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2017.2710183

    Article  Google Scholar 

  • Gao Y, Ma J, Yuille AL (2017) Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples. IEEE Trans Image Process 26(5):2545–2560

    Article  MathSciNet  MATH  Google Scholar 

  • García-Pedrajas N, Del Castillo JAR, Cerruela-García G (2017) A proposal for local k values for k-nearest neighbor rule. IEEE Trans Neural Netw Learning Syst 28(2):470–475

    Article  Google Scholar 

  • Ghosal S, Ray N (2017) Deep deformable registration: enhancing accuracy by fully convolutional neural net. Pattern Recogn Lett. https://doi.org/10.1016/j.patrec.2017.05.022

    Article  Google Scholar 

  • Gong D, Li Z, Lin D, Liu J, Tang X (2013) Hidden factor analysis for age invariant face recognition. 2013 IEEE Int Conf Comput Vis. https://doi.org/10.1109/iccv.2013.357

    Article  Google Scholar 

  • Hayat M, Khan SH, Bennamoun M (2017) Empowering simple binary classifiers for image set based face recognition. Int J Comput Vis. https://doi.org/10.1007/s11263-017-1000-3

    Article  MathSciNet  Google Scholar 

  • Huerta I, Fernández C, Segura C, Hernando J, Prati A (2015) A deep analysis on age estimation. Pattern Recogn Lett 68:239–249. https://doi.org/10.1016/j.patrec.2015.06.006

    Article  Google Scholar 

  • Jalba AC, Wilkinson MH, Roerdink JB (2004) Morphological hat-transform scale spaces and their use in pattern classification. Pattern Recogn 37(5):901–915

    Article  Google Scholar 

  • Karczmarek P, Kiersztyn A, Pedrycz W, Dolecki M (2017) An application of chain code-based local descriptor and its extension to face recognition. Pattern Recogn 65:26–34

    Article  Google Scholar 

  • Kishore Kumar K, Trinatha Rao P (2016) Face verification across ages using discriminative methods and see 5.0 classifier. In: Satapathy S, Das S (eds) Proceedings of first international conference on information and communication technology for intelligent systems, vol 2. Springer, Cham (Smart Innovation, Systems and Technologies, vol 51)

    Google Scholar 

  • Kumar KK, Rao PT (2018) Biometric identification using the periocular region. In: Satapathy S, Joshi A (eds) Information and Communication Technology for Intelligent Systems (ICTIS 2017), vol 2. Springer, Cham (ICTIS 2017. Smart Innovation, Systems and Technologies, vol 84)

    Google Scholar 

  • Lei Z, Pietikäinen M, Li SZ (2014) Learning discriminant face descriptor. IEEE Trans Pattern Anal Mach Intell 36(2):289–302

    Article  Google Scholar 

  • Leibe B, Leonardis A, Schiele B (2004) Combined object categorization and segmentation with an implicit shape model. In Workshop on statistical learning in computer vision. ECCV 2(5):7

    Google Scholar 

  • Li J (2017) A synthetic research on the multimedia data encryption based mobile computing security enhancement model and multi-channel mobile human computer interaction framework. Multimedia Tools Appl 76(16):16963–16987

    Article  Google Scholar 

  • Li Z, Park U, Jain AK (2011) A discriminative model for age invariant face recognition. IEEE Trans Inf Forensics Secur 6(3):1028–1037. https://doi.org/10.1109/tifs.2011.2156787

    Article  Google Scholar 

  • Li S, Gong D, Yuan Y (2013) Face recognition using Weber local descriptors. Neurocomputing 122:272–283

    Article  Google Scholar 

  • Li Z, Gong D, Li X, Tao D (2016) Aging face recognition: a hierarchical learning model based on local patterns selection. IEEE Trans Image Process 25(5):2146–2154

    Article  MathSciNet  MATH  Google Scholar 

  • Li H, Zou H, Hu H (2017) Modified hidden factor analysis for cross-age face recognition. IEEE Signal Process Lett 24(4):465–469

    Article  Google Scholar 

  • Liu BD, Gui L, Wan Y, Wang YX, Shen B, Li X, Wang YJ (2017) Class specific centralized dictionary learning for face recognition. Multimedia Tools Appl 76(3):4159–4177

    Article  Google Scholar 

  • Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60:91–110

    Article  Google Scholar 

  • Lu J, Wang G, Zhou J (2017) Simultaneous feature and dictionary learning for image set based face recognition. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2017.2713940

    Article  MathSciNet  MATH  Google Scholar 

  • Manjunath BS, Ma WY (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842

    Article  Google Scholar 

  • Moeini A, Faez K, Moeini H, Safai AM (2017) Open-set face recognition across look-alike faces in real-world scenarios. Image Vis Comput 57:1–14

    Article  Google Scholar 

  • Ojala T, Valkealahti K, Oja E, Pietikäinen M (2001) Texture discrimination with multidimensional distributions of signed gray-level differences. Pattern Recogn 34(3):727–739

    Article  MATH  Google Scholar 

  • Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  • Pei T, Zhang L, Wang B, Li F, Zhang Z (2017) Decision pyramid classifier for face recognition under complex variations using single sample per person. Pattern Recogn 64:305–313

    Article  Google Scholar 

  • Portillo-Portillo J, Leyva R, Sanchez V, Sanchez-Perez G, Perez-Meana H, Olivares-Mercado J, Nakano-Miyatake M (2017) A view-invariant gait recognition algorithm based on a joint-direct linear discriminant analysis. Appl Intell. https://doi.org/10.1007/s10489-017-1043-8

    Article  Google Scholar 

  • Qu Q, Sun J, Wright J (2014) Finding a sparse vector in a subspace: linear sparsity using alternating directions. In: Advances in Neural Information Processing Systems, Canada

  • Rogozin OV, Kladov SA (2013) Comparative analysis of face recognition algoritms in problem of visual identification. Eng J. https://doi.org/10.18698/2308-6033-2013-6-818

    Article  Google Scholar 

  • Shaikh MK, Tahir MA, Bouridane A (2017) Robust face recognition using kernel collaborative representation and multi-scale local binary patterns. In: Jiang R, Al-maadeed S, Bouridane A, Crookes P, Beghdadi A (eds) Biometric security and privacy. signal processing for security technologies. Springer, Cham

    Google Scholar 

  • Shi H, Wang X, Yi D, Lei Z, Zhu X, Li SZ (2017) Cross-modality face recognition via heterogeneous joint Bayesian. IEEE Signal Process Lett 24(1):81–85

    Article  Google Scholar 

  • Surekha B, Nazare KJ, Viswanadha Raju S, Dey N (2017) Attendance recording system using partial face recognition algorithm. In: Dey N, Santhi V (eds) Intelligent techniques in signal processing for multimedia security. Studies in computational intelligence, vol 660. Springer, Cham

    Google Scholar 

  • Urbach ER, Roerdink JB, Wilkinson MH (2007) Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans Pattern Anal Mach Intell 29(2):272–285

    Article  Google Scholar 

  • Wallis G, Baddeley R (1997) Optimal, unsupervised learning in invariant object recognition. Neural Comput 9(4):883–894

    Article  Google Scholar 

  • Wan L, Liu N, Huo H, Fang T (2017) Face recognition with convolutional neural networks and subspace learning. In: Image, Vision and Computing (ICIVC) 2nd international conference, Chengdu, China, 2017

  • Wang X, Guo R, Kambhamettu C (2015) Deeply-learned feature for age estimation. In: 2015 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 534–541

  • Wong JJ, Cho SY (2009) A local experts organization model with application to face emotion recognition. Expert Syst Appl 36(1):804–819

    Article  Google Scholar 

  • Wu YS, Ju GH, Liu HS, Chen HM (2011) Improved face recognition by integrating local binary pattern and constrained mutual subspace method. Energy Procedia 13:3280–3287

    Article  Google Scholar 

  • Xie X, Jones M, Tam G (2017) Recognition, tracking, and optimisation. Int J Comput Vision 122(3):409–410

    Article  Google Scholar 

  • Xing J, Li K, Hu W, Yuan C, Ling H (2017) Diagnosing deep learning models for high accuracy age estimation from a single image. Pattern Recogn 66:106–116

    Article  Google Scholar 

  • Xu C, Liu Q, Ye M (2017) Age invariant face recognition and retrieval by coupled auto-encoder networks. Neurocomputing 222:62–71

    Article  Google Scholar 

  • Yoo CH, Kim SW, Jung JY, Ko SJ (2017) High-dimensional feature extraction using bit-plane decomposition of local binary patterns for robust face recognition. J Vis Commun Image Represent 45:11–19

    Article  Google Scholar 

  • Zhang H, Patel VM (2017) Sparse representation-based open set recognition. IEEE Trans Pattern Anal Mach Intell 39(8):1690–1696

    Article  Google Scholar 

  • Zhang H, Zhang Y, Huang TS (2013) Pose-robust face recognition via sparse representation. Pattern Recogn 46(5):1511–1521

    Article  MATH  Google Scholar 

  • Zhou XY, Zheng WM (2008) Novel face recognition method based on KPCA plus KDA. J Comput Appl 5:052.2008

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore Kumar Kamarajugadda.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamarajugadda, K.K., Polipalli, T.R. Stride towards aging problem in face recognition by applying hybrid local feature descriptors. Evolving Systems 10, 689–705 (2019). https://doi.org/10.1007/s12530-018-9256-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-018-9256-6

Keywords

Navigation