Skip to main content
Log in

Study on population dynamics for triple-linked food chain using a simulation-based approach

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

The procedures based on simulation have become a feasible testing method that does not require investing valuable resources to create a concrete prototype, especially with the increasing computational power of computers. Thus, design changes can be adopted and design errors can be fixed before it is too late. Simulation turns to be a cheap, safe and often more acceptable from an ethical perspective. In our work we summarize the results from the analysis with the help of a computational simulation of an elementary, yet analytically intractable problem scenario from the field of ecology. Our main goal is to confirm that even with a seemingly simple agent-based model and simulation, one could obtain plausible results regarding a system’s real life behavior. As a last point, we propose an efficient alternative for analysis, rather than the expensive simulation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angelov P, Kasabov N (2005) Evolving computational intelligence systems. In: Proceedings 1st international workshop on genetic fuzzy systems, Granada, Spain, pp 76–82

  • Angelov P, Kasabov N (2006) Evolving intelligent systems, eIS. IEEE SMC eNewsLetter 15:1–13

    Google Scholar 

  • Angelov P (2014) Outside the box: an alternative data analytics framework. J Autom Mobile Robot Intell Syst 8(2):29–35

    MathSciNet  Google Scholar 

  • Bădică A, Bădică C, Ivanović M, Dănciulescu D (2018) Multi-agent modelling and simulation of graph-based predator-prey dynamic systems: a BDI approach. Expert Syst 35(5):e12263

    Article  Google Scholar 

  • Balabanov K, Fietz RG, Logofătu D (2017) Considerations in analyzing ecological dependent populations in a changing environment. In: Computational collective intelligence. ICCCI 2017. Lecture Notes in Computer Science, vol 10448. Springer, Cham, pp 223–232

    Chapter  Google Scholar 

  • Balabanov K, Logofătu D, Badica C, Leon F (2018) A simulation-based analysis of interdependent populations in a dynamic ecological environment. In: Iliadis L, Maglogiannis I, Plagianakos V (eds) Artificial intelligence applications and innovations. AIAI 2018. IFIP advances in information and communication technology, vol 519. Springer, Cham, pp 437–448

    Google Scholar 

  • Begon M, Mortimer M, Thompson DJ (1996) Population ecology: a unified study of animals and plants, 3rd edn. Wiley-Blackwell, New York

    Book  Google Scholar 

  • Canyameres S, Logofătu D (2014) Platform for simulation and improvement of swarm behavior in changing environments. In: Iliadis L, Maglogiannis I, Papadopoulos H (eds) Artificial intelligence applications and innovations. AIAI 2014. IFIP advances in information and communication technology, vol 436. Springer, Berlin, Heidelberg, pp 121–129

  • Cejrowski T, Szymański J, Mora H, Gil D (2018) Detection of the Bee Queen Presence using sound analysis, Asian conference on intelligent information and database systems. Springer, Cham, pp. 297–306

    Chapter  Google Scholar 

  • Dewdney AK (1984) Sharks and fish Wage an ecological War on the toroidal planet Wa-Tor. Sci Am 251(6):14–22

    Article  Google Scholar 

  • DiStefano J III (2015) Dynamic systems biology modeling and simulation, 1st edn. Academic Press, Cambridge, pp 21–23 (January)

    Google Scholar 

  • Dougoud M, Vinckenbosch L, Rohr RP, Bersier L-F, Mazza C (2018) The feasibility of equilibria in large ecosystems: a primary but neglected concept in the complexity-stability debate. PLoS Comput Biol 14(2):1–18

    Article  Google Scholar 

  • Eiben AE, Smith JE (2015) Introduction to evolutionary computing, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  • F-Droid (2016) Wa-Tor—a simple population dynamics simulator, mobile application. https://f-droid.org/en/packages/com.dirkgassen.wator. Accessed 06 Nov 2018

  • Farge M (2007) Numerical experimentation: a third way to study nature. Frontiers of computational science. Proceedings of the international symposium on frontiers of computational science 2005. Springer, Berlin, pp 15–30

    Chapter  Google Scholar 

  • Floreano D, Mattiussi C (2008) Bio-inspired artificial intelligence: theories, methods, and technologies. MIT Press, Cambridge

    Google Scholar 

  • Hogeweg P, Hesper B (1983) The ontogeny of the interaction structure in bumble bee colonies: a MIRROR model. Behav Ecol Sociobiol 12(4):271–283

    Article  Google Scholar 

  • Hyde R, Angelov P, MacKenzie AR (2017) Fully online clustering of evolving data streams into arbitrarily shaped clusters. Inf Sci 382:96–114

    Article  Google Scholar 

  • Gardner M (1970) The fantastic combinations of John Conway’s new solitaire game “life”. Sci Am 223:120–123

    Article  Google Scholar 

  • Gardner M (1971) On cellular automata, self-reproduction, the Garden of Eden and the game “life”. Sci Am 224:112–117

    Article  Google Scholar 

  • Gerdes I, Klawonn F, Kruse R (2004) Evolutionäre Algorithmen: genetische Algorithmen—Strategien und Optimierungsverfahren—Beispielanwendungen. Vieweg, Wiesbaden

    Chapter  Google Scholar 

  • Harold FM (2001) The way of the cell. Oxford University Press, Oxford

    Google Scholar 

  • Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecologic monogr 75(1):3–35

    Article  Google Scholar 

  • Hoppensteadt F (2006) Predator-prey model. Scholarpedia 1(10):1563. http://www.scholarpedia.org/article/Predator-prey_model. Accessed 6 Nov 2018

    Article  Google Scholar 

  • Huang Z, Rosowsky DV, Sparks PR (2001) Hurricane simulation techniques for the evaluation of wind-speeds and expected insurance losses. J Wind Eng Ind Aerodyn 89(7-8):605–617

    Article  Google Scholar 

  • Jafelice RM, da Silva PN (2011) Studies on population dynamics using cellular automata. In: Cellular automata-simplicity behind complexity. InTech

  • Khoury DS, Myerscough MR, Barron AB (2011) A quantitative model of honey Bee colony population dynamics. PLoS ONE 6(4):e18491. https://doi.org/10.1371/journal.pone.0018491. Accessed 06 Nov 2018

    Article  Google Scholar 

  • Law AM (1997) Simulation modeling and analysis. McGraw-Hill Higher Education, New York

    Google Scholar 

  • Logofătu D, Sobol G, Stamate D, Balabanov K (2017) A novel space filling based approach to PSO algorithms for autonomous agents. In: Computational collective intelligence. ICCCI 2017. Lecture Notes in Computer Science, vol 10448. Springer, Cham, pp 361–370

    Chapter  Google Scholar 

  • Logofătu D, Sobol G, Andersson C, Stamate D, Balabanov K, Cejrowski T (2018) Particle swarm optimization algorithms for autonomous robots with deterministic leaders using space filling movements. Evolving Syst 1–14. https://doi.org/10.1007/s12530-018-9245-9. Accessed 6 Nov 2018

  • Mallet DG, De Pillis LG (2006) A cellular automata model of tumor-immune system interactions. J Theor Biol 239(3):334–350

    Article  MathSciNet  Google Scholar 

  • Masuch M, Hartman K, Schuster G (2006) Emotional agents for interactive environments. In: Creating, connecting and collaborating through computing. Fourth IEEE international conference on creating, connecting and collaborating through computing (C5’06). Berkeley, pp 96–102

  • McCann KS (2000) The diversity-stability debate. Nature 405:228–233

    Article  Google Scholar 

  • Michalewicz Z (2008) Genetic algorithms + data structures := evolution programs, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  • Norris JS (2004) Mission-critical development with open source software: lessons learned. IEEE Softw 21(1):42–49

    Article  Google Scholar 

  • Power DA, Watson RA, Szathmáry E, Mills R, Powers ST, Doncaster CP, Czapp B (2015) What can ecosystems learn? Expanding evolutionary ecology with learning theory. Biol Direct 10:1–24

  • Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. In: ACM SIGGRAPH computer graphics, vol 21, no 4, pp 25–34 (August)

    Article  Google Scholar 

  • Rédei M (2005) John von Neumann: selected letters. American Mathematical Society, Providence, RI

    Book  Google Scholar 

  • Southwood TRE, Henderson PA (2016) Ecological methods, 4th edn. Wiley-Blackwell, New York, pp 29–31

    Google Scholar 

  • Strauch M (2018) Modeling and simulation, cute simulations. https://maxstrauch.github.io/projects/mod-sim/index.html. Accessed 06 Nov 2018

  • Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632

    Article  Google Scholar 

  • Tschirhart J (2000) General equilibrium of an ecosystem. J Theor Biol 203:1–41

    Article  Google Scholar 

  • Ulam SM (1976) Adventures of a mathematician. Scribner, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doina Logofătu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balabanov, K., Cejrowski, T., Logofătu, D. et al. Study on population dynamics for triple-linked food chain using a simulation-based approach. Evolving Systems 11, 215–226 (2020). https://doi.org/10.1007/s12530-019-09298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-019-09298-1

Keywords

Navigation