Abstract
We introduce a partial proximal point algorithm for solving nuclear norm regularized matrix least squares problems with equality and inequality constraints. The inner subproblems, reformulated as a system of semismooth equations, are solved by an inexact smoothing Newton method, which is proved to be quadratically convergent under a constraint non-degeneracy condition, together with the strong semi-smoothness property of the singular value thresholding operator. Numerical experiments on a variety of problems including those arising from low-rank approximations of transition matrices show that our algorithm is efficient and robust.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Notes
Available at http://www.mathworks.com/moler/ncmfilelist.html.
References
Alfakih, A.Y., Khandani, A., Wolkowicz, H.: Solving Euclidean distance matrix completion problems via semidefinite programming. Comput. Optim. Appl. 12, 13–30 (1999)
Ames, B., Vavasis, S.: Nuclear norm minimization for the planted clique and biclique problems. Math. Progr. 129, 69–89 (2011)
Bai, Z., Freund, R.: A partial Padé-via-Lanczos method for reduced-order modeling. Linear Algebra Appl. 332–334, 139–164 (2001)
Bee, M.: Estimating rating transition probabilites with missing data. Stat. Methods Appl. 14, 127–141 (2005)
Benczúr, A.A., Csalogány, K., Sarlós, T.: On the feasibility of low-rank approximation for personalized PageRank. In: Special interest tracks and posters of the 14th international conference on World Wide Web, pp. 972–973. ACM, New York (2005)
Bertsekas, D., Tseng, P.: Partial proximal minimization algorithms for convex programming. SIAM J. Optim. 4, 551–572 (1994)
Bhatia, R.: Matrix Analysis. Springer, New York (1997)
Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 2, 113–120 (1972)
Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20, 1956–1982 (2010)
Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)
Chennubhotla, S.: Spectral methods for multi-scale feature extraction and data clustering, PhD thesis, University of Toronto, (2004)
Chu, M., Funderlic, R., Plemmons, R.: Structured low rank approximation. Linear Algebra Appl. 366, 157–172 (2003)
Bai, Z.-J., Chu, D., Tan, R.C.E.: Computing the nearest doubly stochastic matrix with a prescribed entry. SIAM J. Sci. Comput. 29, 635–655 (2007)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Aacdemic Press, Boston (1992)
Dolezal, V.: Monotone operators and applications in Control and Network Theory, vol. 2. Elsevier Scientific Pub. Co., Amsterdam (1979)
Eaves, B.C.: On the basic theorem of complementarity. Math. Progr. 1, 68–75 (1971)
Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)
Eckstein, J., Bertsekas, D.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Progr. 55, 293–318 (1992)
Fazel, M.: Matrix Rank Minimization with Applications. PhD thesis, Stanford University (2002)
Fazel, M., Hindi, H., Boyd, S.: A rank minimization heuristic with application to minimum order system approximation. In: Proceedings of the American Control Conference (2001)
Fischer, A.: Solution of monotone complementarity problems with locally Lipschitzian functions. Math. Progr. 76, 513–532 (1997)
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2, 17–40 (1976)
Gao, Y., Sun, D.F.: Calibrating least squares covariance matrix problems with equality and inequality constraints. SIAM J. Matrix Anal. Appl. 31, 1432–1457 (2009)
Gao, Y., Sun, D.F.: A majorized penalty approach for calibrating rank constrained correlation matrix problems (2010)
Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordre un, et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet nonlinéaires. Revue Française d’Automatique, Informatique, Recherche Opérationnelle 2, 41–76 (1975)
Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)
Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)
Golub, G.H., Hoffman, A., Stewart, G.W.: A generalization of the Eckart–Young–Mirsky matrix approximation theorem. Linear Algebra Appl. 88, 317–327 (1987)
Ha, C.: A generalization of the proximal point algorithm. SIAM J. Control Optim. 28, 503–512 (1990)
Ho, N.D., Van Dooren, P.: Non-negative matrix factorization with fixed row and column sums. Linear Algebra Appl. 429, 1020–1025 (2008)
Ibaraki, S., Fukushima, M.: Partial proximal method of multipliers for convex programming problems. J Oper. Res. Soc. Japan-Keiei Kagaku 39, 213–229 (1996)
Jiang K.F.: Algorithms for large scale nuclear norm minimization and convex quadratic semidefinite programming problems, PhD thesis, National University of Singapore, August (2011)
Juan, K.: Lin. Reduced rank approximations of transition matrices. In: Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics (2003)
Liu, Y.J. , Sun, D.F., Toh, K.C.: An implementable proximal point algorithmic framework for nuclear norm minimization. Math. Progr. (2010)
Löwner, K.: Über monotone matrixfunktionen. Mathematische Zeitschrift 38, 177–216 (1934)
Luo, Y.: A smoothing Newton-BICGStab method for least squares matrix nuclear norm problems, Master thesis, National University of Singapore, January (2010)
Ma, S., Goldfarb, D., Chen, L.: Fixed point and bregman iterative methods for matrix rank minimization. Math. Progr. 128, 321–353 (2011)
Meng, F., Sun, D., Zhao, G.: Semismoothness of solutions to generalized equations and the Moreau–Yosida regularization. Math. Progr. 104, 561–581 (2005)
Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 959–972 (1977)
Mirsky, L.: Symmetric gauge functions and unitarily invariant norms. Q. J. Math. 11, 50–59 (1960)
Moreau, J.J.: Proximite et dualite dans un espace hilbertien. Bulletin de la Societe Mathematique de France 93, 273–299 (1965)
Page, L., Brin, S., Motwani, R. Winograd, T.: The pagerank citation ranking: Bringing order to the web, Technical report, Stanford Digital Library Technologies Project. Available at http://dbpubs.stanford.edu/pub/1999-66 (1999)
Pong, T.K., Tseng, P., Ji, S., Ye, J.: Trace norm regularization: reformulations, algorithms, and multi-task learning. SIAM J. Optim. 20, 3465–3489 (2010)
Qi, H.D., Sun, D.F.: A quadratically convergent Newton method for computing the nearest correlation matrix. SIAM J. Matrix Anal. Appl. 28, 360–385 (2006)
Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Progr. 58, 353–367 (1993)
Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52, 471–501 (2010)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)
Rockafellar, R.T.: Augmented Lagrangains and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)
Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pac. J. Math. 21, 343–348 (1967)
Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)
Sun, D.F., Sun, J.: Semismooth matrix valued functions. Math. Oper. Res. 27, 150–169 (2002)
Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3—a Matlab software package for semidefinite programming. Optim. Methods Softw. 11, 545–581 (1999)
Toh, K.C., Yun, S.W.: An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pac. J. Optim. 6, 615–640 (2010)
Van der Vorst, H.A.: SIAM J. Sci. Stat. Comput. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems 13, 631–644 (1992)
Warga, J.: Fat homeomorphisms and unbounded derivate containers. J. Math. Anal. Appl. 81, 545–560 (1981)
Watson, G.A.: Characterization of the subdifferential of some matrix norms. Linear Algebra Appl. 170, 33–45 (1992)
Yosida, K.: Functional Analysis. Springer, Berlin (1964)
Zarantonello E.H.: Projections on convex sets in Hilbert space and spectral theory I and II. In: Zarantonello, E.H. (ed.) Contributions to Nonlinear Functional Analysis, pp. 237–424. Academic Press, New York (1971)
Zhao, X.Y., Sun, D.F., Toh, K.C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20, 1737–1765 (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
Kim-Chuan Toh: Research support in part by Academic Research Fund under grant R-146-000-168-112.
Defeng Sun: Research supported in part by Academic Research Fund under grant R-146-000-149-112.
Rights and permissions
About this article
Cite this article
Jiang, K., Sun, D. & Toh, KC. A partial proximal point algorithm for nuclear norm regularized matrix least squares problems. Math. Prog. Comp. 6, 281–325 (2014). https://doi.org/10.1007/s12532-014-0069-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12532-014-0069-8