Skip to main content
Log in

A partial proximal point algorithm for nuclear norm regularized matrix least squares problems

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

We introduce a partial proximal point algorithm for solving nuclear norm regularized matrix least squares problems with equality and inequality constraints. The inner subproblems, reformulated as a system of semismooth equations, are solved by an inexact smoothing Newton method, which is proved to be quadratically convergent under a constraint non-degeneracy condition, together with the strong semi-smoothness property of the singular value thresholding operator. Numerical experiments on a variety of problems including those arising from low-rank approximations of transition matrices show that our algorithm is efficient and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. Available at http://www.mathworks.com/moler/ncmfilelist.html.

  2. Available at: http://www.cs.toronto.edu/~tsap/experiments/datasets/index.html.

References

  1. Alfakih, A.Y., Khandani, A., Wolkowicz, H.: Solving Euclidean distance matrix completion problems via semidefinite programming. Comput. Optim. Appl. 12, 13–30 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ames, B., Vavasis, S.: Nuclear norm minimization for the planted clique and biclique problems. Math. Progr. 129, 69–89 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bai, Z., Freund, R.: A partial Padé-via-Lanczos method for reduced-order modeling. Linear Algebra Appl. 332–334, 139–164 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bee, M.: Estimating rating transition probabilites with missing data. Stat. Methods Appl. 14, 127–141 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Benczúr, A.A., Csalogány, K., Sarlós, T.: On the feasibility of low-rank approximation for personalized PageRank. In: Special interest tracks and posters of the 14th international conference on World Wide Web, pp. 972–973. ACM, New York (2005)

  6. Bertsekas, D., Tseng, P.: Partial proximal minimization algorithms for convex programming. SIAM J. Optim. 4, 551–572 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bhatia, R.: Matrix Analysis. Springer, New York (1997)

    Book  Google Scholar 

  8. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 2, 113–120 (1972)

    Article  Google Scholar 

  9. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20, 1956–1982 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chennubhotla, S.: Spectral methods for multi-scale feature extraction and data clustering, PhD thesis, University of Toronto, (2004)

  12. Chu, M., Funderlic, R., Plemmons, R.: Structured low rank approximation. Linear Algebra Appl. 366, 157–172 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bai, Z.-J., Chu, D., Tan, R.C.E.: Computing the nearest doubly stochastic matrix with a prescribed entry. SIAM J. Sci. Comput. 29, 635–655 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  15. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Aacdemic Press, Boston (1992)

    MATH  Google Scholar 

  16. Dolezal, V.: Monotone operators and applications in Control and Network Theory, vol. 2. Elsevier Scientific Pub. Co., Amsterdam (1979)

  17. Eaves, B.C.: On the basic theorem of complementarity. Math. Progr. 1, 68–75 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  18. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)

    Article  MATH  Google Scholar 

  19. Eckstein, J., Bertsekas, D.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Progr. 55, 293–318 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fazel, M.: Matrix Rank Minimization with Applications. PhD thesis, Stanford University (2002)

  21. Fazel, M., Hindi, H., Boyd, S.: A rank minimization heuristic with application to minimum order system approximation. In: Proceedings of the American Control Conference (2001)

  22. Fischer, A.: Solution of monotone complementarity problems with locally Lipschitzian functions. Math. Progr. 76, 513–532 (1997)

    MATH  Google Scholar 

  23. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  24. Gao, Y., Sun, D.F.: Calibrating least squares covariance matrix problems with equality and inequality constraints. SIAM J. Matrix Anal. Appl. 31, 1432–1457 (2009)

    Article  MathSciNet  Google Scholar 

  25. Gao, Y., Sun, D.F.: A majorized penalty approach for calibrating rank constrained correlation matrix problems (2010)

  26. Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordre un, et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet nonlinéaires. Revue Française d’Automatique, Informatique, Recherche Opérationnelle 2, 41–76 (1975)

    MathSciNet  Google Scholar 

  27. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)

    Book  MATH  Google Scholar 

  28. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

  29. Golub, G.H., Hoffman, A., Stewart, G.W.: A generalization of the Eckart–Young–Mirsky matrix approximation theorem. Linear Algebra Appl. 88, 317–327 (1987)

    Article  MathSciNet  Google Scholar 

  30. Ha, C.: A generalization of the proximal point algorithm. SIAM J. Control Optim. 28, 503–512 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ho, N.D., Van Dooren, P.: Non-negative matrix factorization with fixed row and column sums. Linear Algebra Appl. 429, 1020–1025 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ibaraki, S., Fukushima, M.: Partial proximal method of multipliers for convex programming problems. J Oper. Res. Soc. Japan-Keiei Kagaku 39, 213–229 (1996)

    MATH  MathSciNet  Google Scholar 

  33. Jiang K.F.: Algorithms for large scale nuclear norm minimization and convex quadratic semidefinite programming problems, PhD thesis, National University of Singapore, August (2011)

  34. Juan, K.: Lin. Reduced rank approximations of transition matrices. In: Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics (2003)

  35. Liu, Y.J. , Sun, D.F., Toh, K.C.: An implementable proximal point algorithmic framework for nuclear norm minimization. Math. Progr. (2010)

  36. Löwner, K.: Über monotone matrixfunktionen. Mathematische Zeitschrift 38, 177–216 (1934)

    Article  MathSciNet  Google Scholar 

  37. Luo, Y.: A smoothing Newton-BICGStab method for least squares matrix nuclear norm problems, Master thesis, National University of Singapore, January (2010)

  38. Ma, S., Goldfarb, D., Chen, L.: Fixed point and bregman iterative methods for matrix rank minimization. Math. Progr. 128, 321–353 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Meng, F., Sun, D., Zhao, G.: Semismoothness of solutions to generalized equations and the Moreau–Yosida regularization. Math. Progr. 104, 561–581 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 959–972 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  41. Mirsky, L.: Symmetric gauge functions and unitarily invariant norms. Q. J. Math. 11, 50–59 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  42. Moreau, J.J.: Proximite et dualite dans un espace hilbertien. Bulletin de la Societe Mathematique de France 93, 273–299 (1965)

    MATH  MathSciNet  Google Scholar 

  43. Page, L., Brin, S., Motwani, R. Winograd, T.: The pagerank citation ranking: Bringing order to the web, Technical report, Stanford Digital Library Technologies Project. Available at http://dbpubs.stanford.edu/pub/1999-66 (1999)

  44. Pong, T.K., Tseng, P., Ji, S., Ye, J.: Trace norm regularization: reformulations, algorithms, and multi-task learning. SIAM J. Optim. 20, 3465–3489 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Qi, H.D., Sun, D.F.: A quadratically convergent Newton method for computing the nearest correlation matrix. SIAM J. Matrix Anal. Appl. 28, 360–385 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  46. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Progr. 58, 353–367 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  47. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52, 471–501 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  48. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  49. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  50. Rockafellar, R.T.: Augmented Lagrangains and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  51. Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pac. J. Math. 21, 343–348 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  52. Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  53. Sun, D.F., Sun, J.: Semismooth matrix valued functions. Math. Oper. Res. 27, 150–169 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  54. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3—a Matlab software package for semidefinite programming. Optim. Methods Softw. 11, 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  55. Toh, K.C., Yun, S.W.: An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pac. J. Optim. 6, 615–640 (2010)

    MATH  MathSciNet  Google Scholar 

  56. Van der Vorst, H.A.: SIAM J. Sci. Stat. Comput. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems 13, 631–644 (1992)

    MATH  Google Scholar 

  57. Warga, J.: Fat homeomorphisms and unbounded derivate containers. J. Math. Anal. Appl. 81, 545–560 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  58. Watson, G.A.: Characterization of the subdifferential of some matrix norms. Linear Algebra Appl. 170, 33–45 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  59. Yosida, K.: Functional Analysis. Springer, Berlin (1964)

    Google Scholar 

  60. Zarantonello E.H.: Projections on convex sets in Hilbert space and spectral theory I and II. In: Zarantonello, E.H. (ed.) Contributions to Nonlinear Functional Analysis, pp. 237–424. Academic Press, New York (1971)

  61. Zhao, X.Y., Sun, D.F., Toh, K.C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20, 1737–1765 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim-Chuan Toh.

Additional information

Kim-Chuan Toh: Research support in part by Academic Research Fund under grant R-146-000-168-112.

Defeng Sun: Research supported in part by Academic Research Fund under grant R-146-000-149-112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, K., Sun, D. & Toh, KC. A partial proximal point algorithm for nuclear norm regularized matrix least squares problems. Math. Prog. Comp. 6, 281–325 (2014). https://doi.org/10.1007/s12532-014-0069-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-014-0069-8

Mathematics Subject Classification

Profiles

  1. Defeng Sun