Skip to main content
Log in

A practical volume algorithm

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

We present a practical algorithm for computing the volume of a convex body with a target relative accuracy parameter \(\varepsilon >0\). The convex body is given as the intersection of an explicit set of linear inequalities and an ellipsoid. The algorithm is inspired by the volume algorithms in Lovász and Vempala (J Comput Syst Sci 72(2):392–417, 2006) and Cousins and Vempala (SODA, pp. 1215–1228, 2014), but makes significant departures to improve performance, including the use of empirical convergence tests, an adaptive annealing scheme and a new rounding algorithm. We propose a benchmark of test bodies and present a detailed evaluation of our algorithm. Our results indicate that that volume computation and integration might now be practical in moderately high dimension (a few hundred) on commodity hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Genz, A., Bretz, F.: Computation of Multivariate Normal and t Probabilities. Springer, New York (2009)

    Book  MATH  Google Scholar 

  2. Iyengar, S.: Evaluation of normal probabilities of symmetric regions. SIAM J. Sci. Stat. Comput. 9, 812–837 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kannan, R., Li, G.: Sampling according to the multivariate normal density. In: FOCS ’96: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, p. 204. IEEE Computer Society (1996)

  4. Martynov, G.: Evaluation of the normal distribution function. J. Soviet Math 77, 1857–1875 (1980)

    MATH  Google Scholar 

  5. Schellenberger, J., Palsson, B.: Use of randomized sampling for analysis of metabolic networks. J. Biol. Chem. 284(9), 5457–5461 (2009)

    Article  Google Scholar 

  6. Somerville, P.N.: Numerical computation of multivariate normal and multivariate-t probabilities over convex regions. J. Comput. Graph. Stat. 7, 529–545 (1998)

    MathSciNet  Google Scholar 

  7. Dyer, M.E., Frieze, A.M., Kannan, R.: A random polynomial time algorithm for approximating the volume of convex bodies. In: STOC, pp. 375–381 (1989)

  8. Dyer, M.E., Frieze, A.M., Kannan, R.: A random polynomial-time algorithm for approximating the volume of convex bodies. J. ACM 38(1), 1–17 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lovász, L., Vempala, S.: Simulated annealing in convex bodies and an \(O^*(n^4)\) volume algorithm. J. Comput. Syst. Sci. 72(2), 392–417 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cousins, B., Vempala, S.: A cubic algorithm for computing Gaussian volume. In: SODA, pp. 1215–1228 (2014)

  11. Cousins, B., Vempala, S.: Bypassing KLS: Gaussian cooling and an \(O^*(n^3)\) volume algorithm. In: STOC, pp. 539–548 (2015)

  12. Lovász, L., Deák, I.: Computational results of an \(o^*(n^4)\) volume algorithm. Eur. J. Oper. Res. 216 (2012)

  13. Cousins, B., Vempala, S.: Volume computation of convex bodies. MATLAB File Exchange. http://www.mathworks.com/matlabcentral/fileexchange/43596-volume-computation-of-convex-bodies (2013)

  14. Emiris, I., Fisikopoulos, V.: Efficient random-walk methods for approximating polytope volume. In: Proceedings of the 30th Annual Symposium on Computational Geometry, p. 318. ACM (2014)

  15. Lovász, L., Vempala, S.: Hit-and-run from a corner. SIAM J. Comput. 35, 985–1005 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bourgain, J.: Random points in isotropic convex sets. Convex Geom. Anal. 34, 53–58 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Rudelson, M.: Random vectors in the isotropic position. J. Funct. Anal. 164, 60–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Adamczak, R., Litvak, A., Pajor, A., Tomczak-Jaegermann, N.: Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles. J. Am. Math. Soc. 23, 535–561 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Štefankovič, D., Vempala, S., Vigoda, E.: Adaptive simulated annealing: a near-optimal connection between sampling and counting. J. ACM 56(3), 18–36 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Kannan, R., Lovász, L., Simonovits, M.: Random walks and an \(O^*(n^5)\) volume algorithm for convex bodies. Random Struct. Algorithms 11, 1–50 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gillman, D.: A Chernoff bound for random walks on expander graphs. In: FOCS, pp. 680–691. IEEE Comput. Soc. Press, Los Alamitos (1993)

  22. Kannan, R., Lovász, L., Simonovits, M.: Isoperimetric problems for convex bodies and a localization lemama. Discrete Comput. Geom. 13, 541–559 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Canfield, E.R., McKay, B.: The asymptotic volume of the Birkhoff polytope. Online J. Anal. Comb. 4, 4 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Chan, C., Robbins, D., Yuen, D.: On the volume of a certain polytope. Exp. Math. 9(1), 91–99 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. De Loera, J.A., Liu, F., Yoshida, R.: A generating function for all semi-magic squares and the volume of the Birkhoff polytope. J. Algebraic Comb. 30(1), 113–139 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pak, I.: Four questions on Birkhoff polytope. Ann. Comb. 4(1), 83–90 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zeilberger, D.: Proof of a conjecture of Chan, Robbins, and Yuen. Electron. Trans. Numer. Anal. 9, 147–148 (electronic) (1999) [Orthogonal polynomials: numerical and symbolic algorithms (Leganés, 1998)]

  28. Beck, M., Pixton, D.: The Ehrhart polynomial of the Birkhoff polytope. Discrete Comput. Geom. 30(4), 623–637 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chan, C., Robbins, D.: On the volume of the polytope of doubly stochastic matrices. Exp. Math. 8(3), 291–300 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dyer, M., Gritzmann, P., Hufnagel, A.: On the complexity of computing mixed volumes. SIAM J. Comput. 27(2), 356–400 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cousins, B., Vempala, S.: Volume computation and sampling. http://www.cc.gatech.edu/~bcousins/volume.html (2013)

Download references

Acknowledgments

B. Cousins was supported in part by a National Science Foundation Graduate Research Fellowship. Both authors were supported in part by National Science Foundation award CCF-1217793.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ben Cousins or Santosh Vempala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cousins, B., Vempala, S. A practical volume algorithm. Math. Prog. Comp. 8, 133–160 (2016). https://doi.org/10.1007/s12532-015-0097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-015-0097-z

Keywords

Mathematics Subject Classification

Navigation