Skip to main content
Log in

A Computational Cognitive Model of Information Search in Textual Materials

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Document foraging for information is a crucial and increasingly prevalent activity nowadays. We designed a computational cognitive model to simulate the oculomotor scanpath of an average web user searching for specific information from textual materials. In particular, the developed model dynamically combines visual, semantic, and memory processes to predict the user’s focus of attention during information seeking from paragraphs of text. A series of psychological experiments was conducted using eye-tracking techniques in order to validate and refine the proposed model. Comparisons between model simulations and human data are reported and discussed taking into account the strengths and shortcomings of the model. The proposed model provides a unique contribution to the investigation of the cognitive processes involved during information search and bears significant implications for web page design and evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The algorithm used is available at the following web site: www.svi.cps.utexas.edu.

  2. The Levenhstein distance between two strings is the minimal number of basic operations (addition, deletion or replacement of a character) to transform one string into the other. For instance, 4 operations are needed to transform a U-path (coded 12348765) into an inverted-N-path (12345678).

References

  1. Underwood G, editor. Eye guidance in reading and scene perception. Oxford: Elsevier; 1998.

    Google Scholar 

  2. Treisman A, Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980;12(1):97–136.

    Article  CAS  PubMed  Google Scholar 

  3. Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiol. 1985;4:219–27.

    CAS  Google Scholar 

  4. Itti L, Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res. 2000;40(10–12):1489–506.

    Article  CAS  PubMed  Google Scholar 

  5. Itti L, Koch C. Computational modeling of visual attention. Nat Rev Neurosci. 2001;2(3):194–203.

    Article  CAS  PubMed  Google Scholar 

  6. Posner MI, Cohen Y. Components of visual orienting. In: Bouma H, Bouwhuis D, editors. Attention and performance, vol. X. Hillsdale: Erlbaum; 1984. p. 531–56.

    Google Scholar 

  7. Henderson JM, Brockmole JR, Castelhano MS, Mack ML. Visual saliency does not account for eye movements during search in real-world scenes. In: van Gompel RP, Fischer MH, Murray MS, Hill RL, editors. Eye movements: a window on mind and brain. Oxford: Elsevier; 2007.

    Google Scholar 

  8. Foulsham T, Underwood G. What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. J Vis. 2008;8(2):6, 1–17.

    Google Scholar 

  9. Wolfe JM. Guided search 4.0: current progress with a model of visual search. In: Gray W, editor. Integrated models of cognitive systems. New York: Oxford University Press; 2007. p. 99–119.

    Chapter  Google Scholar 

  10. Pomplun M. Advancing area activation towards a general model of eye movements in visual search. In: Gray W, editor. Integrated models of cognitive systems. New York: Oxford; 2007. p. 120–31.

    Chapter  Google Scholar 

  11. Zelinski GJ. A theory of eye movements during target acquisition. Psychol Rev. 2008;115(4):787–835.

    Article  Google Scholar 

  12. Navalpakkam V, Itti L. Modeling the influence of task on attention. Vision Res. 2005;45(2):205–31.

    Article  PubMed  Google Scholar 

  13. Carver R. Reading rate: a review of research and theory. San Diego: Academic Press; 1990.

    Google Scholar 

  14. Reichle ED, Pollatsek A, Fisher DL, Rayner K. Toward a model of eye movement control in reading. Psychol Rev. 1998;105:125–57.

    Article  CAS  PubMed  Google Scholar 

  15. Reichle ED, Rayner K, Pollatsek A. E-Z Reader: a cognitive-control, serial-attention model of eye-movement control during reading. Cogn Syst Res. 2006;7:4–22.

    Article  Google Scholar 

  16. Engbert R, Nuthmann A, Richter E, Kliegl R. SWIFT: a dynamical model of saccade generation during reading. Psychol Rev. 2005;112:777–813.

    Article  PubMed  Google Scholar 

  17. Salvucci DD. An integrated model of eye movements and visual encoding. Cogn Syst Res. 2001;1:201–20.

    Article  Google Scholar 

  18. Reilly R, Radach R. Some empirical tests of an interactive activation model of eye movement control in reading. Cogn Syst Res. 2006;7:34–55.

    Article  Google Scholar 

  19. Anderson JR. Rules of the mind. Hillsdale: Erlbaum; 1993.

    Google Scholar 

  20. Simola J, Salojärvi J, Kojo I. Using hidden Markov model to uncover processing states from eye movements in information search tasks. Cogn Syst Res. 2008;9:237–51.

    Article  Google Scholar 

  21. Lemaire B, Guérin-Dugué A, Baccino T, Chanceaux M, Pasqualotti L. A cognitive computational model of eye movements investigating visual strategies on textual material. In: Carlson L, Hölscher C, Shipley T, editors. Proceedings of the annual meeting of the cognitive science society; 2011. p. 1146–51.

  22. Kintsch W. Comprehension: a paradigm for cognition. Cambridge: Cambridge University Press; 1998.

    Google Scholar 

  23. Lemaire B, Denhière G, Bellissens C, Jhean-Larose S. A computational model for simulating text comprehension. Behav Res Methods. 2006;38(4):628–37.

    Article  PubMed  Google Scholar 

  24. Landauer T, Dumais S. A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol Rev. 1997;104:211–40.

    Article  Google Scholar 

  25. Landauer T, McNamara D, Dennis S, Kintsch W. Handbook of latent semantic analysis. Hillsdale: Lawrence Erlbaum; 2007.

    Google Scholar 

  26. Pirolli P, Fu W. SNIF-ACT: a model of information foraging on the World Wide Web. In: 9th International conference on user modeling; 2003. p. 45–54.

  27. Fu W, Pirolli P. SNIF-ACT: a model of user navigation on the World Wide Web. Human Comput Interact. 2007;22:355–412.

    CAS  Google Scholar 

  28. Kitajima M, Blackmon MH, Polson PG. A comprehension-based model of web navigation and its application to web usability analysis. In: People and computers XIV—usability or else! Proceedings of HCI; 2000. p. 357–73.

  29. Chanceaux M, Guérin-Dugué A, Lemaire B, Baccino T. Towards a model of information seeking by integrating visual, semantic and memory maps. In: Caputo B, Vincze M, editors. Proceedings of the 4th international cognitive vision workshop, Lecture Notes in Computer Science 5329. Berlin: Springer; 2008. p. 65–78.

  30. Perry JS, Geisler WS. Gaze-contingent real-time simulation of arbitrary visual fields. In: Rogowitz B, Pappas T, editors. Human vision and electronic imaging, SPIE proceedings. San Jose, CA; 2002.

  31. Arani T, Karwan MH, Drury CG. A variable-memory model of visual search. Hum Factors. 1984;26:631–9.

    CAS  PubMed  Google Scholar 

  32. Horowitz TS. Revisiting the variable memory model of visual search. Vis Cogn. 2006;14(4–8):668–84.

    Article  Google Scholar 

  33. Holmqvist K, Holsanova J, Barthelson M, Lundqvist D. Reading or scanning? A study of newspaper and net paper reading. In: Hyönä J, Deubel H, editors. The mind’s eye: cognitive and applied aspects of eye movement research. Amsterdam: Elsevier; 2003. p. 657–70.

  34. Cole MJ, Gwizdka J, Liu C, Bierig R, Belkin NJ, Zhang X. Task and user effects on reading patterns in information search. Interact Comput. 2011;23:346–62.

    Article  Google Scholar 

  35. Oliva A, Torralba A. Building the gist of a scene: the role of global image features in recognition. Prog Brain Res Vis Percept. 2006;155:23–36.

    Article  Google Scholar 

  36. MacGregor JN, Ormerod TC, Chronicle EP. A model of human performance on the travelling salesperson problem. Mem Cogn. 2000;28:1183–90.

    Article  CAS  Google Scholar 

  37. Gray WD, editor. Integrated models of cognitive systems. New York: Oxford University Press; 2007.

    Google Scholar 

  38. Poldrack RA. Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci. 2006;10:59–63.

    Article  PubMed  Google Scholar 

  39. Baccino T, Bellino C, Colombi T. Mesure de l’utilisabilité des Interfaces. Paris: Hermès Science Publisher (Lavoisier); 2005.

  40. Dix AJ, Finlay JE, Abowd GD, Beale R. Human-computer interaction. London: Prentice Hall; 1998.

    Google Scholar 

  41. West RL, Emond B. Can cognitive modeling improve usability testing and rapid prototyping? In: Mahwah NJ, editor. Proceedings of the fourth international conference on cognitive modeling. Hillsdale: Lawrence Erlbaum; 2001. p. 271–73.

Download references

Acknowledgments

We thank Maria Ktori and Erik Reichle for their insightful feedback on a previous version of the manuscript. This research was supported by the ANR (French Research National Agency) project Eye-LSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Chanceaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanceaux, M., Guérin-Dugué, A., Lemaire, B. et al. A Computational Cognitive Model of Information Search in Textual Materials. Cogn Comput 6, 1–17 (2014). https://doi.org/10.1007/s12559-012-9200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-012-9200-1

Keywords

Navigation