Skip to main content
Log in

Inference Through Embodied Simulation in Cognitive Robots

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

In Professor Taylor’s own words, the most striking feature of any cognitive system is its ability to “learn and reason” cumulatively throughout its lifetime, the structure of its inferences both emerging and constrained by the structure of its bodily experiences. Understanding the computational/neural basis of embodied intelligence by reenacting the “developmental learning” process in cognitive robots and in turn endowing them with primitive capabilities to learn, reason and survive in “unstructured” environments (domestic and industrial) is the vision of the EU-funded DARWIN project, one of the last adventures Prof. Taylor embarked upon. This journey is about a year old at present, and our article describes the first developments in relation to the learning and reasoning capabilities of DARWIN robots. The novelty in the computational architecture stems from the incorporation of recent ideas firstly from the field of “connectomics” that attempts to explore the large-scale organization of the cerebral cortex and secondly from recent functional imaging and behavioral studies in support of the embodied simulation hypothesis. We show through the resulting behaviors’ of the robot that from a computational viewpoint, the former biological inspiration plays a central role in facilitating “functional segregation and global integration,” thus endowing the cognitive architecture with “small-world” properties. The latter on the other hand promotes the incessant interleaving of “top-down” and “bottom-up” information flows (that share computational/neural substrates) hence allowing learning and reasoning to “cumulatively” drive each other. How the robot learns about “objects” and simulates perception, learns about “action” and simulates action (in this case learning to “push” that follows pointing, reaching, grasping behaviors’) are used to illustrate central ideas. Finally, an example of how simulation of perception and action lead the robot to reason about how its world can change such that it becomes little bit more conducive toward realization of its internal goal (an assembly task) is used to describe how “object,” “action,” and “body” meet in the Darwin architecture and how inference emerges through embodied simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. DARWIN stands for Dexterous Assembler Robots Working with embodied INtelligence (www.darwin-project.eu).

References

  1. Addis DR, Schacter DL. The hippocampus and imagining the future: where do we stand? Front Hum Neurosci. 2012;5. Article 173.

  2. Addis DR, Pan L, Vu MA, Laiser N, Schacter DL. Constructive episodic simulation of the future and the past: distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia. 2009;47:2222–38.

    Article  PubMed  Google Scholar 

  3. Amari S. Dynamics of patterns formation in lateral-inhibition type neural fields. Biol Cybern. 1977;27:77–87.

    Article  CAS  PubMed  Google Scholar 

  4. Barabasi AL (2003) Linked: the new science of networks. Boston: Perseus Books. ISBN-10:0738206679.

  5. Barabási A-L. The network takeover. Nat Phys. 2012;8:14–6.

    Article  Google Scholar 

  6. Barabási A-L, Albert R. Emergence of scaling in random networks. Science. 1999;286:509–12.

    Article  PubMed  Google Scholar 

  7. Bernstein N. The coordination and regulation of movements. Oxford: Pergamon Press; 1967.

    Google Scholar 

  8. Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 2010;14(6):277–90.

    Article  PubMed  Google Scholar 

  9. Buccino G, Binkofski F, Fink GR. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci. 2001;13:400–4.

    CAS  PubMed  Google Scholar 

  10. Buckner RL, Carroll DC. Self-projection and the brain. Trends Cogn Sci. 2007;2:49–57. [medline abstract].

    Article  Google Scholar 

  11. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38. [medline abstract].

    Article  PubMed  Google Scholar 

  12. Bueti D, Walsh V. The parietal cortex and the representation of time, space, number and other magnitudes. Philos Trans R Soc B Biol Sci. 2009;364(1525):1831–40.

    Article  Google Scholar 

  13. Caeyenberghs K, van Roon D, Swinnen SP, Smits-Engelsman BC. Deficits in executed and imagined aiming performance in brain-injured children. Brain Cogn. 2009;69(1):154–61.

    Article  CAS  PubMed  Google Scholar 

  14. Chiel HJ, Beer RD. The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci. 1997;20:553–7.

    Article  CAS  PubMed  Google Scholar 

  15. Clark A. Being there: putting brain, body and world together again. Cambridge: MIT Press; 1997.

    Google Scholar 

  16. Damasio A. Self comes to mind: constructing the conscious brain. New York: Pantheon; 2010.

    Google Scholar 

  17. Decety J. Do imagined and executed actions share the same neural substrate. Cog Brain Res. 1996;3:87–93.

    Article  CAS  Google Scholar 

  18. Decety J, Sommerville J. Motor cognition and mental simulation. In: Kosslyn SM, Smith E, editors. Cognitive psychology: mind and brain. New York: Prentice Hall; 2007. p. 451–81.

    Google Scholar 

  19. Desmurget M, Sirigu A. A parietal-premotor network for movement intention and motor awareness. Trends Cogn Sci. 2009;13:411–9.

    Article  PubMed  Google Scholar 

  20. Feldman J. From molecule to metaphor: a neural theory of language. Cambridge, MA: MIT Press; 2006.

    Google Scholar 

  21. Frey SH, Gerry VE. Modulation of neural activity during observational learning of actions and their sequential orders. J Neurosci. 2006;26:13194–201.

    Article  CAS  PubMed  Google Scholar 

  22. Fritzke B. A growing neural gas network learns topologies. In: Tesauro G, Touretzky D, Leen T, editors. Advances in neural information processing systems. 7th ed. Cambridge, MA: MIT Press; 1995. p. 625–32.

    Google Scholar 

  23. Gallese V, Lakoff G. The brain’s concepts: the role of the sensory-motor system in reason and language. Cogn Neuropsychol. 2005;22:455–79.

    Article  PubMed  Google Scholar 

  24. Gallese V, Sinigaglia C. What is so special with embodied simulation. Trends Cogn Sci (Oct 7). 2011. http://www.unipr.it/arpa/mirror/pubs/pdffiles/Gallese/2011/tics_20111007.pdf.

  25. Georg Stork H (2012) Towards a scientific foundation for engineering cognitive systems—a European research agenda, its rationale and perspectives. BICA Elsevier Science publishers, 1:82–91. doi:10.1016/j.bica.2012.04.002.

  26. Glenberg AM. What memory is for. Behav Brain Sci. 1997;20:1–19.

    CAS  PubMed  Google Scholar 

  27. Glenberg A, Gallese V. Action-based language: a theory of language acquisition production and comprehension. Cortex. 2012;48(7):905–22.

    Article  PubMed  Google Scholar 

  28. Grafton ST. Embodied cognition and the simulation of action to understand others. Ann N Y Acad Sci. 2009;1156:97–117.

    Article  PubMed  Google Scholar 

  29. Grush R. The emulation theory of representation: motor control, imagery, and perception. Behav Brain Sci. 2004;27:377–96.

    PubMed  Google Scholar 

  30. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6(7):e159, 1479–93.

    Google Scholar 

  31. Hassabis D, Maguire EA. The construction system of the brain. In: Bar M, editor. Predictions in the brain: using our past to generate a future. New York: Oxford University Press; 2011.

    Google Scholar 

  32. Hesslow G. Conscious thought as a simulation of behavior and perception. Trends Cogn Sci. 2002;6:242–7.

    Article  PubMed  Google Scholar 

  33. Hesslow G, Jirenhed DA. The inner world of a simple robot. J Conscious Stud. 2007;14:85–96.

    Google Scholar 

  34. Hoffmann M, Gravato Marques H, et al. Body schema in robotics: a review. IEEE Trans Auton Mental Dev. 2010;2:304–24.

    Article  Google Scholar 

  35. Hofstadter DR. Gödel, Escher, Bach: an eternal golden braid. NY: Basic Books; 1979.

    Google Scholar 

  36. Hofstadter DR. I am a strange loop. NY: Basic Books; 2007.

    Google Scholar 

  37. Hopfield JJ. Searching for memories, Sudoku, implicit check bits, and the iterative use of not-always-correct rapid neural computation. Neural Comput. 2008;20(5):1119–64.

    Article  CAS  PubMed  Google Scholar 

  38. Hummel JE, Holyoak KJ. A symbolic-connectionist theory of relational inference and generalization. Psychol Rev. 2003;110:220–64.

    Article  PubMed  Google Scholar 

  39. Iacoboni M. Neurobiology of imitation. Annual review of psychology. Curr Opin Neurobiol. 2009;19(6):661–5.

    Article  CAS  PubMed  Google Scholar 

  40. Iriki A, Sakura O. Neuroscience of primate intellectual evolution: natural selection and passive and intentional niche construction. Philos Trans R Soc Lond B Biol Sci. 2008;363:2229–41.

    Article  PubMed  Google Scholar 

  41. Johnson M. The body in the mind: the bodily basis of meaning, imagination and reason. Chicago: University of Chicago Press; 1987.

    Google Scholar 

  42. Kacelnik A, Chappell J, Weir AAS, Kenward B. Tool use and manufacture in birds. In: Bekoff M, editor. Encyclopedia of animal behavior, vol 3. Westport, CT: Greenwood Publishing Group; 2004. p. 1067–9.

    Google Scholar 

  43. Kohler E, et al. Hearing sounds, understanding actions: action representation in mirror neurons. Science. 2002;297(5582):846–8.

    Article  CAS  PubMed  Google Scholar 

  44. Kohonen T. Self-organizing maps. Berlin: Springer; 1995.

    Book  Google Scholar 

  45. Kokinov BN, Petrov A. Integration of Memory and Reasoning in Analogy-Making: The AMBR Model, The Analogical Mind: Perspectives from Cognitive Science. Cambridge, MA: MIT Press; 2001.

    Google Scholar 

  46. Locher JL. The magic of M. C. Escher. Harry N. Abrams, Inc. 2000. ISBN 0-8109-6720-0.

  47. Marino BFM, Gough PM, Gallese V, Riggio L, Buccino G. How the motor system handles nouns: a behavioral study. Psychol Res. 2013;77(1):64–73.

    Article  PubMed  Google Scholar 

  48. Martin A. The representation of object concepts in the brain. Annu Rev Psychol. 2007;58:25–45.

    Article  PubMed  Google Scholar 

  49. Martin A. Circuits in mind: the neural foundations for object concepts. In: Gazzaniga M, editor. The cognitive neurosciences. 4th ed. Cambridge, MA: MIT Press; 2009. p. 1031–45.

    Google Scholar 

  50. Meyer K, Damasio A. Convergence and divergence in a neural architecture for recognition and memory. Trends Neurosci. 2009;32(7):376–82.

    Article  CAS  PubMed  Google Scholar 

  51. Mohan V, Morasso P. Passive motion paradigm: an alternative to optimal control. Front Neurorobot. 2011;5:4. doi:10.3389/fnbot.2011.00004.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Mohan V, Morasso P. How past experience, imitation and practice can be combined to swiftly learn to use novel “tools”: insights from skill learning experiments with baby humanoids. international conference on biomimetic and biohybrid systems: living machines 2012, July 9–12 2012, Barcelona, Spain. 2012.

  53. Mohan V, Morasso P, Metta G, Kasderidis S. The distribution of rewards in growing sensorimotor maps acquired by cognitive robots through exploration. Neurocomputing. 2011;. doi:10.1016/j.neucom.2011.06.009.

    Google Scholar 

  54. Mohan V, Morasso P, Zenzeri J, Metta G, Chakravarthy VS, Sandini G. Teaching a humanoid robot to draw ‘Shapes’. Auton Robots. 2011;31(1):21–53.

    Article  Google Scholar 

  55. Mussa Ivaldi FA, Morasso P, Zaccaria R. Kinematic networks. A distributed model for representing and regularizing motor redundancy. Biol Cybern. 1988;60:1–16.

    CAS  PubMed  Google Scholar 

  56. O’Reilly RC, Munakata Y, Frank MJ, Hazy TE, Contributors. Computational Cognitive Neuroscience. Wiki Book, 1st Edition. 2012. URL:http://ccnbook.colorado.edu.

  57. Patterson K, Nestor PJ, Rogers TT. Where do you known what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci. 2007;8(12):976–87.

    Article  CAS  PubMed  Google Scholar 

  58. Pepperberg IM. The Alex studies: cognitive and communicative abilities of grey parrots. Harvard University Press. 2000. ISBN 0-674-00806-5.

  59. Pulvermüller F, Fadiga L. Active perception: sensorimotor circuits as a cortical basis for language. Nat Rev Neurosci. 2010;11(5):351–60.

    Article  PubMed  Google Scholar 

  60. Ramachandran VS. The tell-tale brain: a neuroscientist’s quest for what makes us human. New York: W. W. Norton & Company; 2011.

    Google Scholar 

  61. Rizzolatti G, Sinigaglia C. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci. 2010;11:264–74.

    Article  CAS  PubMed  Google Scholar 

  62. Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E, Perani D, Fazio F. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res. 1996;111:246–52.

    Article  CAS  PubMed  Google Scholar 

  63. Rizzolatti G, Fogassi L, Gallese V. Neurophysiological mechanisms underlying action understanding and imitation. Nat Rev Neurosci. 2001;2:661–70.

    Article  CAS  PubMed  Google Scholar 

  64. Rother C, Kolmogorov V, Blake A. GrabCut: Interactive foreground extraction using iterated graph cuts. In: ACM transactions on graphics (SIGGRAPH). Los Angeles, CA: ACM Press; 2004. p. 309–14.

  65. Shadmehr R, Mussa-Ivaldi FA, Bizzi E. Postural force fields of the human arm and their role in generating multijoint movements. J Neurosci. 1993;13:45–82.

    CAS  PubMed  Google Scholar 

  66. Shapiro R. Direct linear transformation method for three-dimensional cinematography. Res Quart. 1978;49:197–205.

    CAS  Google Scholar 

  67. Sporns O. Networks of the brain. Cambridge, MA: MIT Press; 2010.

    Google Scholar 

  68. Sporns O, Kötter R. Motifs in brain networks. PLoS Biol. 2004;2:1910–8.

    Article  CAS  Google Scholar 

  69. Sporns O, Honey CJ, Kötter R. Identification and classification of hubs in brain networks. PLoS ONE. 2007;2:e1049.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Suddendorf T, Addis DR, Corballis MC. Mental time travel and the shaping of the human mind. Philos Trans R Soc B. 2009;364:1317–24.

    Article  Google Scholar 

  71. Thompson E. Mind in life biology, phenomenology and the sciences of mind. 1st ed. Cambridge, MA: Harvard University Press; 2007. p. 568.

    Google Scholar 

  72. Umiltà MA, Escola L, Intskirveli I, Grammont F, Rochat M, Caruana F, Jezzini A, Gallese V, Rizzolatti G. When pliers become fingers in the monkey motor system. Proc Natl Acad Sci USA. 2008;105(6):2209–13.

    Article  PubMed  Google Scholar 

  73. Varela FJ, Maturana HR, Uribe R. Autopoiesis: the organization of living systems, its characterization and a model. Biosystems. 1974;5:187–96.

    Article  CAS  Google Scholar 

  74. Venon D, von Hofsten C, Fadiga L. A roadmap for cognitive development in humanoid robots. Berlin: Springer; 2010.

    Google Scholar 

  75. Visalberghi E, Fragaszy D. What is challenging about tool use? The capuchin’s perspective. In: Wasserman EA, Zentall TR, editors. Comparative cognition: experimental explorations of animal intelligence. New York: Oxford University Press; 2006. p. 529–52.

    Google Scholar 

  76. Visalberghi E, Limongelli L. Action and understanding: tool use revisited through the mind of capuchin monkeys. In: Russon A, Bard K, Parker S, editors. Reaching into thought. The minds of the great apes. Cambridge: Cambridge University Press; 1996. p. 57–79.

    Google Scholar 

  77. Visalberghi E, Tomasello M. Primate causal understanding in the physical and in the social domains. Behav Process. 1997;42:189–203.

    Article  Google Scholar 

  78. Vygotsky LS. Mind in society: the development of higher psychological processes. Cambridge, MA: Harvard University Press; 1978.

    Google Scholar 

  79. Watts JD, Strogatz S. Collective dynamics of small world networks. Nature. 1998;393(6684).

  80. Weiner N. Cybernetics: or control and communication in the animal and the machine. Paris: Hermann & Cie, Cambridge, MA: MIT Press. 1948. ISBN 978-0-262-73009-9.

  81. Weir AAS, Chappell J, Kacelnik A. Shaping of hooks in New Caledonian crows. Science. 2002;297:981–3.

    Article  CAS  PubMed  Google Scholar 

  82. Welberg L. Neuroimaging: rats join the ‘default mode’ club. Nat Rev Neurosci. 2012;13(4):223. doi:10.1038/nrn3224.

    Article  Google Scholar 

  83. White JG. Neuronal connectivity in C elegans. Trends Neurosci. 1985;8:277–83.

    Article  Google Scholar 

  84. Whiten A, McGuigan N, Marshall-Pescini S, Hopper LM. Emulation, imitation, overimitation and the scope of culture for child and chimpanzee. Philos Trans R Soc B Biol Sci. 2009;364:2417–28.

    Article  Google Scholar 

Download references

Acknowledgments

The research presented in this article is supported by IIT (Istituto Italiano di Tecnologia, RBCS dept) and by the EU FP7 project DARWIN (http://www.darwin-project.eu, Grant No: FP7-270138). We are indebted to the anonymous reviewers for their detailed analysis and suggestions to make the draft sharp and more reader friendly. The authors also acknowledge the support of all teams involved in the DARWIN consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwanathan Mohan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohan, V., Morasso, P., Sandini, G. et al. Inference Through Embodied Simulation in Cognitive Robots. Cogn Comput 5, 355–382 (2013). https://doi.org/10.1007/s12559-013-9205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-013-9205-4

Keywords

Navigation