Skip to main content
Log in

Biologically Motivated Model for Outdoor Scene Classification

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

This paper focuses on the problem of scene classification for mobile robots in an outdoor environment. We present a novel model that combines biologically inspired features and cortex-like memory patterns. The biologically inspired gist feature is used to characterize the content of a scene image. The Incremental Hierarchical Discriminant Regression tree is used to simulate the generation and recall process of human memory. The association between the gist feature and the scene label is established in an incremental way. A cognitive model of the world is constructed using real-time online learning, and a new scene differentiated by reasoning. Using the biologically motivated model, we solved the outdoor scene classification problem on the University of Southern California data set. Experimental results indicate the incremental model improves the classification accuracy rates to nearly 100 % and significantly reduces training costs compared with other biologically inspired feature-based approaches. The new scene classification system achieves state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fox D, Burgard W, Dellaert F, Thrun S. Monte Carlo localization: efficient position estimation for mobile robots. In: Proceedings of the 16th national conference on artificial intelligence, July 1999.

  2. Lingemann K, Sunrnann H, Nuchter A, Hertzberg J. Indoor and outdoor localization for fast mobile robots. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, Sept 2004, pp. 2185–2190.

  3. Ulrich I, Nourbakhsh I. Appearance-based place recognition for topological localization. In: Proceedings of IEEE international conference on robotics and automation, Apr 2000, pp. 1023–1029.

  4. Torralba A, Murphy KP, Freeman WT, Rubin MA. Context-based vision system for place and object recognition. In: Proceedings of IEEE international conference on computer vision (ICCV), Oct 2003, pp. 1023–1029.

  5. Jain AK, Vailaya A. Image retrieval using color and shape. Pattern Recognit. 1996;29(8):1233–44.

    Article  Google Scholar 

  6. Chang E, Goh K, Sychay G, Wu G. Content-based soft annotation for multimodal image retrieval using Bayes point machines. IEEE Trans Circuit Syst Video Technol. 2006;13(1):26–38.

    Article  Google Scholar 

  7. Serrano N, Savakis A, Luo J. Improved scene classification using efficient low-level features and semantic cues. Pattern Recogn. 2004;37(9):1773–84.

    Article  Google Scholar 

  8. Vogel J, Schiele B. Semantic modeling of natural scenes for content-based image retrieval. Int J Comput Vis. 2007;72(2):133–57.

    Article  Google Scholar 

  9. Fan J, Gao Y, Luo H, Xu G. Statistical modeling and conceptualization of natural images. Pattern Recogn. 2005;38(6):865–85.

    Article  Google Scholar 

  10. Bosch A, Zisserman A, Munoz X. Scene classification using a hybrid generative/discriminative approach. IEEE Trans Pattern Anal Mach Intell. 2008;30(4):712–27.

    Article  PubMed  Google Scholar 

  11. Qin J, Yung NHC. Scene categorization via contextual visual words. Pattern Recogn. 2010;43(5):1874–88.

    Article  Google Scholar 

  12. Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell. 1998;20(11):1254–9.

    Article  Google Scholar 

  13. Itti L, Koch C. Computational modeling of visual attention. Nat Rev Neurosci. 2001;2(3):194–203.

    Article  CAS  PubMed  Google Scholar 

  14. Siagian C, Itti L. Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Trans Pattern Anal Mach Intell. 2007;29(2):300–12.

    Article  PubMed  Google Scholar 

  15. Song D, Tao D. C1 units for scene classification. In: Proceedings of IEEE international conference on pattern and recognition, 2008, pp. 1–4.

  16. Song D, Tao D. Biologically inspired feature manifold for scene classification. IEEE Trans Image Process. 2010;19(1):174–84.

    Article  PubMed  Google Scholar 

  17. Poggio T, Bizzi E. Generalization in vision and motor control. Nature. 2004;431:768–74.

    Article  CAS  PubMed  Google Scholar 

  18. Hwang WS, Weng J. Online image classification using IHDR. Int J Doc Anal Recognit. 2003;5(2–3):118–25.

    Article  Google Scholar 

  19. Hwang WS, Weng J. Incremental hierarchical discriminant regression. IEEE Trans Neural Netw. 2007;18(2):397–415.

    Article  PubMed  Google Scholar 

  20. Weng J, McClelland J, Pentland A, Sporns O, et al. Autonomous mental development by robots and animals. Science. 2001;291(5504):599–600.

    Article  CAS  PubMed  Google Scholar 

  21. Oliva A, Schyns P. Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cogn Psychol. 1997;34:72–107.

    Article  CAS  PubMed  Google Scholar 

  22. Oliva A, Schyns P. Colored diagnostic blobs mediate scene recognition. Cogn Psychol. 2000;41(2):176–210.

    Article  CAS  PubMed  Google Scholar 

  23. Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T. Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell. 2007;29(3):411–26.

    Article  PubMed  Google Scholar 

  24. Hwang WS, Weng J. Hierarchical discriminant regression. IEEE Trans Pattern Anal Mach Intell. 2000;22(11):1277–93.

    Article  Google Scholar 

  25. Hussain A. Cognitive computation: an introduction. Cogn Comput. 2009;1:1–3.

    Article  Google Scholar 

  26. Squartini S, Schuller B, Hussain A. Cognitive and emotional information processing for human–machine interaction. Cogn Comput. 2012;4:383–5.

    Article  Google Scholar 

  27. Cambria E, Hussain A. Sentic album: content-, concept-, and context-based online personal photo management system. Cogn Comput. 2012;4:477–96.

    Article  Google Scholar 

  28. Solé-Casals J, Zaiats V. A non-linear VAD for noisy environments. Cogn Comput. 2010;2:191–8.

    Article  Google Scholar 

  29. Solé-Casals J, Caiafa CF. A simple approximation for fast nonlinear deconvolution. In: Advances in nonlinear speech processing—5th international conference on nonlinear speech processing, 2011, pp. 55–62.

  30. Ho-Phuouc T, Guyader N, Guerin-Dugue A. A functional and statistical bottom-up saliency model to reveal the relative contributions of low-level visual guiding factors. Cogn Comput. 2010;2:344–59.

    Article  Google Scholar 

  31. Li J, Tian Y, Huang T, Gao W. Probabilistic multi-task learning for visual saliency estimation in video. Int J Comput Vis. 2010;90(2):150–65.

    Article  Google Scholar 

  32. Yanulevskaya V, Marsman JB, Cornelissen F, Geusebroek J-M. An image statistics-based model for fixation prediction. Cogn Comput. 2011;3:94–104.

    Article  Google Scholar 

  33. Cutsuridis V. A cognitive model of saliency, attention, and picture scanning. Cogn Comput. 2009;1:292–9.

    Article  Google Scholar 

  34. Siagian C, Itti L. Biologically-inspired robotics vision Monte-Carlo localization in the outdoor environment. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, 2007, pp. 1723–1730.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61105031). Sincere gratitude from the authors go to Weng and his group for the material and code of “Incremental Hierarchical Discriminant Regression” and Itti and his group for providing the data set.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Du, C., Sun, H. et al. Biologically Motivated Model for Outdoor Scene Classification. Cogn Comput 7, 20–33 (2015). https://doi.org/10.1007/s12559-013-9227-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-013-9227-y

Keywords

Navigation