Skip to main content
Log in

Image Fusion by Hierarchical Joint Sparse Representation

  • Published:
Cognitive Computation Aims and scope Submit manuscript

An Erratum to this article was published on 20 May 2015

Abstract

Joint sparse representation (JSR) based image fusion, as one of competitive sparse representation based fusion methods, has been widely studied recently. In this kind of methods, image features are represented as sparse coefficients. They are typically calculated with two decomposition algorithms, namely orthogonal matching pursuit and basis pursuit. In both of them, an error tolerance parameter is specified to control the fineness of a fused image. Intuitively, the more detailed an image fineness is, the more micro-information is presented; the more rough it is, the more macro-information is summarized. Therefore, it is reasonable to assume that complementary information exists among the images generated by different error tolerance parameters. Motivated by this, in this paper, we have tried to combine the features in these images and verify the above assumption. Specifically, we have proposed a two-layer hierarchical framework based on JSR. Extensive experiments demonstrate that effectively combining features in images of different fineness does improve the quality of the fused image significantly. The proposed framework outperforms previous methods according to many objective evaluation criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Clark A. Mindware: an introduction to the philosophy of cognitive science. New York: Oxford University Press; 2001.

    Google Scholar 

  2. Underwood G. Cognitive processes in eye guidance: algorithms for attention in image processing. Cognit Comput. 2009;1(1):64–76.

    Article  Google Scholar 

  3. Cambria E, Hussain A. Sentic album: content-, concept-, and context-based online personal photo management system. Cognitive Computation. 2012;4(4):477–96.

    Article  Google Scholar 

  4. He B, Xu D, Nian R, van Heeswijk M, Yu Q, Miche Y, Lendasse A. Fast face recognition via sparse coding and extreme learning machine. Cognitive Computation, 2013;1–14.

  5. Yang B, Li S. Multifocus image fusion and restoration with sparse representation. IEEE Trans Instrum Meas. 2010;59(4):884–92.

    Article  Google Scholar 

  6. Yang B, Li S. Pixel-level image fusion with simultaneous orthogonal matching pursuit. Inf Fus. 2012;13(1):10–9.

    Article  Google Scholar 

  7. Yin H, Li S. Multimodal image fusion with joint sparsity model. Opt Eng. 2011;50(6):1–10.

    Article  Google Scholar 

  8. Li H, Manjunath BS, Mitra SK. Multisensor image fusion using wavelet transform. Gr Models Image Process. 1995;57(3):235–45.

    Article  Google Scholar 

  9. Goshtasby AA, Nikolov S. Image fusion: advances in the state of the art. Inf Fus. 2007;8(2):114–8.

    Article  Google Scholar 

  10. Stathaki T. Image fusion: algorithms and applications. Oxford: Elsevier; 2008.

    Google Scholar 

  11. Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996;381(13):607–9.

    Article  CAS  PubMed  Google Scholar 

  12. Olshausen BA, Field DJ. Sparse coding with an over-complete basis set: a strategy employed by v1? Vision Res. 1997;37(23):3311–25.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Bovik AC. A universal image quality index. IEEE Signal Process Lett. 2002;9(3):81–4.

    Article  CAS  Google Scholar 

  14. Yu N, Qiu TS, Bi F, Wang AQ. Image features extraction and fusion based on joint sparse representation. IEEE J Sel Topics Signal Process. 2011;5(5):1074–82.

    Article  Google Scholar 

  15. Yao Y, Xin X, Guo P. OMP or BP? a comparison study of image fusion based on joint sparse representation. Proc Int Conf Neural Inf Process. 2012;7667:75–82.

    Google Scholar 

  16. Pati YC, Rezaiifar R, Krishnaprasad PS. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. Proceedings of the 27th Asilomar Conference on Signals Systems and Computers. 1993; pp. 40–44.

  17. Chen SS, Donoho DL, Saunders MA. Atomic decomposition by basis pursuit. SIAM Rev. 2001;43(1):129–59.

    Article  Google Scholar 

  18. Akerman A. Pyramid techniques for multisensor fusion. Proceedings of SPIE. 1992;1828:124–31.

    Article  Google Scholar 

  19. Li S, Kwok JT, Wang Y. Using the discrete wavelet frame transform to merge Landsat TM and SPOT panchromatic images. Inf Fus. 2002;3(1):17–23.

    Article  Google Scholar 

  20. Lewis JJ, O’Callaghan RJ, Nikolov SG, Bull DR, Canagarajah CN. Region based image fusion using complex wavelets. In Seventh Int Conf Inf Fus. 2004;1:555–62.

    Google Scholar 

  21. Nencini F, Garzelli A, Baronti S, Alparone L. Remote sensing image fusion using curvelet transform. Inf Fus. 2007;8(2):143–56.

    Article  Google Scholar 

  22. Chen T, Zhang J, Zhang Y. Remote sensing image fusion based on ridgelet transform. Proc Geosci Remote Sens Symp. 2005;2:1150–3.

    Google Scholar 

  23. Do MN, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process. 2005;14(12):2091–106.

    Article  PubMed  Google Scholar 

  24. Cunha LD, Zhou JP. The nonsubsampled contourlet transform: theory, design and applications. IEEE Trans Image Process. 2006;15(10):3089–101.

    Article  PubMed  Google Scholar 

  25. Yang B, Li ST, Sun FM. Image fusion using nonsubsampled contourlet transform. International Conference on Image and Graphics. 2007;719–724.

  26. Elad M, Aharon M. Image Denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process. 2006;15(12):3736–45.

    Article  PubMed  Google Scholar 

  27. Yang J, Wright J, Huang T, Ma Y. Image super-resolution via sparse representation. IEEE Trans Image Process. 2010;19(11):2861–73.

    Article  PubMed  Google Scholar 

  28. Zhao M, Li S, Kwok J. Text detection in images using sparse representation with discriminative dictionaries. Image Vis Comput. 2010;28(12):1590–9.

    Article  Google Scholar 

  29. Bryt O, Elad M. Compression of facial images using the K-SVD algorithm. J Vis Commun Image Represent. 2008;19(4):270–83.

    Article  Google Scholar 

  30. Shen B, Hu W, Zhang Y, Zhang YJ. Image inpainting via sparse representation. Proceedings of International Conference on Acoustics Speech and Signal Processing. 2009; pp. 697–700.

  31. Liu L, Li W, Tang S, Gong W. A novel separating strategy for face hallucination. IEEE International Conference on Image Processing. 2012; pp. 1849–1852.

  32. Aharon M, Elad M, Bruckstein AM. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process. 2006;54(11):4311–22.

    Article  Google Scholar 

  33. Marial J, Ponce J, Sapiro G. Online dictionary learning for sparse coding. Proceedings of International Conference on Machine Learning. 2009; pp. 689–696.

  34. Bruckstein AM, Donoho DL, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 2009;51(1):34–81.

    Article  Google Scholar 

  35. Elad M. Sparse and redundant representation: from theory to applications in signal and image processing. New York: Springer; 2010.

    Book  Google Scholar 

  36. Mallat SG, Zhang Z. Matching pursuits and time-frequency dictionaries. IEEE Trans Signal Process. 1993;41(12):3397–415.

    Article  Google Scholar 

  37. Gorodnistsky IF, Rao BD. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans Signal Process. 1997;45(3):600–16.

    Article  Google Scholar 

  38. Duarte M, Sarvotham S, Baron D, Wakin M, Baraniuk R. Distributed compressed sensing of jointly sparse signals. Proceedings of Asilomar Conference on Signals Systems and Computers. 2005; pp. 1537–1541.

  39. Donoho DL, Elad M, Temlyakov VN. Stable recovery of spare overcomplete representations in the presence of noise. IEEE Trans Inf Theory. 2006;52(1):6–18.

    Article  Google Scholar 

  40. Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. The Annals of statistics. 2004;32(2):407–99.

    Article  Google Scholar 

  41. Liu G, Yang W. A multi-resolution hierarchical image fusion scheme and its performance evaluation. In Proc SPIE. 2003;4898:200–6.

    Article  Google Scholar 

  42. Qu G, Zhang D, Yan P. Information measure for performance of image fusion. Electron Lett. 2002;38(7):313–5.

    Article  Google Scholar 

  43. Piella G, Heijmans H. A new quality metric for image fusion. Int Conf Image Process. 2003;2:173–6.

    Google Scholar 

  44. Xydeas CS, Petrovic V. Objective image fusion performance measure. Electron Lett. 2000;36(4):308–9.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviews and editor for their insightful comments and suggestions. This work is supported by the Grants from the National Natural Science Foundation of China (Project Nos. 90820010, 60911130513 and 61375045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Guo, P., Xin, X. et al. Image Fusion by Hierarchical Joint Sparse Representation. Cogn Comput 6, 281–292 (2014). https://doi.org/10.1007/s12559-013-9235-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-013-9235-y

Keywords

Navigation