Skip to main content
Log in

A Kernel Clustering-Based Possibilistic Fuzzy Extreme Learning Machine for Class Imbalance Learning

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Compared with traditional computational intelligence techniques such as the support vector machine, extreme learning machine (ELM) provides better generalization performance at a much faster learning speed without tuning model parameters. Unfortunately, the training process of ELM is still sensitive to the outliers or noises in the training set. On the other hand, when it comes to imbalanced datasets, ELM produces suboptimal classification models. In this paper, a kernel possibilistic fuzzy c-means clustering-based ELM algorithm for class imbalance learning (CIL) is developed to handle the class imbalance problem in the presence of outliers and noises. A set of experiments are conducted on several artificial and real-world imbalanced datasets for testing the generalization performance of the proposed algorithm. Additionally, we compare its performance with some typical CIL methods. The results indicate that the proposed method is a very effective method for CIL, especially in the presence of outliers and noises in datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Taylor JG. Cognitive computation. Cogn Comput. 2009;1(1):4–16.

    Article  Google Scholar 

  2. Grassi M, Cambria E, Hussain A, Piazza F. Sentic web: a new paradigm for managing social media affective information. Cogn Comput. 2011;3(3):480–9.

    Article  Google Scholar 

  3. Wöllmer M, Eyben F, Graves A, Schuller B, Rigoll G. Bidirectional LSTM networks for context-sensitive keyword detection in a cognitive virtual agent framework. Cogn Comput. 2010;2(3):180–90.

    Article  Google Scholar 

  4. Cambria E, Hussain A. Sentic computing: techniques, tools, and applications. SpringerBriefs in cognitive computation. Dordrecht: Springer; 2012.

    Book  Google Scholar 

  5. Wang QF, Cambria E, Liu CL, Hussain A. Common sense knowledge for handwritten Chinese recognition. Cogn Comput. 2013;5(2):234–42.

    Article  Google Scholar 

  6. Cambria E, Hussain A. Sentic album: content-, concept-, and context-based online personal photo management system. Cogn Comput. 2012;4(4):477–96.

    Article  Google Scholar 

  7. Mital P, Smith T, Hill R, Henderson J. Clustering of Gaze During Dynamic Scene Viewing is Predicted by Motion. Cogn Comput. 2011;3(1):5–24.

    Article  Google Scholar 

  8. Wang G, Zhao Y, Wang D. A protein secondary structure prediction frame- work based on the extreme learning machine. Neurocomputing. 2008;72(1–3):262–8.

    Article  Google Scholar 

  9. Lan Y, Soh YC, Huang G-B. Extreme learning machine based bacterial protein subcellular localization prediction. In: Proceedings of the IEEE International Joint Conference on Neural Networks, IJCNN 2008, Hong Kong, 2008. p. 1859–1863.

  10. Zhang R, Huang G-B, Sundararajan N, Saratchandran P. Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM Trans Comput Biol Bioinform. 2007;4(3):485–95.

    Article  CAS  PubMed  Google Scholar 

  11. Mohammed AA, Minhas R, Jonathan Wu QM, Sid-Ahmed MA. Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recogn. 2011;44(10–11):2588–97.

    Article  Google Scholar 

  12. Nizar AH, Dong ZY, Wang Y. Power utility nontechnical loss analysis with extreme learning machine method. IEEE Trans Power Syst. 2008;23(3):946–55.

    Article  Google Scholar 

  13. Decherchi S, Gastaldo P, Dahiya RS, Valle M, Zunino R. Tactile data classification of contact materials using computational intelligence. IEEE Trans Robot. 2011;27(3):635–9.

    Article  Google Scholar 

  14. Decherchi S, Gastaldo P, Zunino R, Cambria E, Redi J. Circular-ELM for the reduced-reference assessment of perceived image quality. Neurocomputing. 2013;102:78–89.

    Article  Google Scholar 

  15. Cambria E, Huang G-B, Kasun LLC, et al. Extreme learning machines [Trends & Controversies]. IEEE Intell Syst. 2013;28(6):30–59.

  16. Amaury L, Qing H, Yoan M. Advances in extreme learning machines (ELM2012). Neurocomputing. 2014;128:1–3.

  17. Zong W, Huang G-B, Chen Y. Weighted extreme learning machine for imbalance learning. Neurocomputing. 2013;101:229–42.

    Article  Google Scholar 

  18. Mazurowski MA, Habas PA, Zurada JM, et al. Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance. Neural Netw. 2008;21(2):427–36.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Imam T, Ting K, Kamruzzaman J. z-SVM: an SVM for improved classification of imbalanced data. In: Proceedings of the 19th Australian Joint Conference on Artificial Intelligence, Hobart, Australia, 2006, pp. 264–273.

  20. Soda P. A multi-objective optimisation approach for class imbalance learning. Pattern Recogn. 2011;44(8):1801–10.

    Article  Google Scholar 

  21. Huang HP, Liu YH. Fuzzy support vector machines for pattern recognition and data mining. Int J Fuzzy Syst. 2002;4(3):826–35.

    Google Scholar 

  22. Lin CF, Wang SD. Fuzzy support vector machines. IEEE Trans Neural Netw. 2002;13(2):464–71.

    Article  PubMed  Google Scholar 

  23. Yang X, Zhang G, Lu J. A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises. IEEE Trans Fuzzy Syst. 2011;19(1):105–15.

    Article  Google Scholar 

  24. Batuwita Rukshan, Palade Vasile. FSVM-CIL: fuzzy support vector machines for class imbalance learning. IEEE Trans Fuzzy Syst. 2010;18(3):558–71.

    Article  Google Scholar 

  25. Yang MS, Tsai HS. A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recognit Lett. 2008;29:1713–25.

    Article  Google Scholar 

  26. Rhee FCH, Choi KS, Choi BI. Kernel approach to possibilistic c-means clustering. Int J Intell Syst. 2009;24:272–92.

    Article  Google Scholar 

  27. Chen Z, Shixiong X, Bing L. A robust fuzzy kernel clustering algorithm. Appl Math Inf Sci. 2013;7(3):1005–12.

    Article  Google Scholar 

  28. Seiffert C, Khoshgoftaar TM, Van Hulse J, et al. RUSBoost: a hybrid approach to alleviating class imbalance. Syst Man Cybern Part A Syst Hum IEEE Trans. 2010;40(1):185–97.

    Article  Google Scholar 

  29. Haibo H, Garcia E. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21(9):1263–84.

    Article  Google Scholar 

  30. Galar M, Fernández A, Barrenechea E, et al. A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. Syst Man Cybern Part C Appl Rev IEEE Trans. 2012;42(4):463–84.

    Article  Google Scholar 

  31. García V, Sánchez JS, Mollineda RA. On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl-Based Syst. 2012;25(1):13–21.

    Article  Google Scholar 

  32. Ditzler G, Polikar R, Chawla N. An incremental learning algorithm for non-stationary environments and class imbalance. In: Pattern Recognition (ICPR), 2010 20th International Conference on IEEE, 2010. p. 2997–3000.

  33. Burez J, Van den Poel D. Handling class imbalance in customer churn prediction. Expert Syst Appl. 2009;36(3):4626–36.

    Article  Google Scholar 

  34. Wang S, Yao X. Multiclass imbalance problems: analysis and potential solutions. Syst Man Cybern Part B Cybern IEEE Trans. 2012;42(4):1119–30.

    Article  Google Scholar 

  35. Pang S, Zhu L, Chen G, et al. Dynamic class imbalance learning for incremental LPSVM. Neural Netw. 2013;44:87–100.

    Article  PubMed  Google Scholar 

  36. Alejo R, Valdovinos RM, García V, et al. A hybrid method to face class overlap and class imbalance on neural networks and multi-class scenarios. Pattern Recogn Lett. 2012;34(4):380–8.

    Article  Google Scholar 

  37. Lin SJ, Chang C, Hsu MF. Multiple extreme learning machines for a two-class imbalance corporate life cycle prediction. Knowl-Based Syst. 2012;39:214–23.

    Article  Google Scholar 

  38. Tahir MA, Kittler J, Yan F. Inverse random under sampling for class imbalance problem and its application to multi-label classification. Pattern Recogn. 2012;45(10):3738–50.

    Article  Google Scholar 

  39. Chen WC, Hsu CC, Hsu JN. Adjusting and generalizing CBA algorithm to handling class imbalance. Expert Syst Appl. 2012;39(5):5907–19.

    Article  Google Scholar 

  40. García-Pedrajas N, Pérez-Rodríguez J, García-Pedrajas M, et al. Class imbalance methods for translation initiation site recognition in DNA sequences. Knowl-Based Syst. 2012;25(1):22–34.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by “the Fundamental Research Funds for the Central Universities” under Grant No. 2014QNA45.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-Xiong Xia or Bing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, SX., Meng, FR., Liu, B. et al. A Kernel Clustering-Based Possibilistic Fuzzy Extreme Learning Machine for Class Imbalance Learning. Cogn Comput 7, 74–85 (2015). https://doi.org/10.1007/s12559-014-9256-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-014-9256-1

Keywords

Navigation