Skip to main content
Log in

Classification of Uncertain Data Streams Based on Extreme Learning Machine

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Classification over data streams is an important task in data mining. The challenges become even larger when uncertain data are considered. An important challenge in the classification of uncertain data streams is concept drift and uncertainty of data. This paper studies the problem using extreme learning machine (ELM). We first propose weighted ensemble classifier based on ELM (WEC-ELM) algorithm, which can dynamically adjust classifier and the weight of training uncertain data to solve the problem of concept drift. Furthermore, an uncertainty classifier based on ELM (UC-ELM) algorithm is designed for the classification of uncertain data streams, which not only considers tuple value, but also its uncertainty, improving the efficiency and accuracy. Finally, the performance of our methods is verified through a large number of simulation experiments. The experimental results show that our methods are effective ways to solve the problem of classification of uncertain data streams and are able to solve the problem of concept drift, reduce the execution time and improve the efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Faradjian A, Gehrke J, Bonnett P. Gadt: a probability space adt for representing and querying the physical world. In: Proceedings of 18th international conference on data engineering, 2002.

  2. Aggarwal CC. On density based transforms for uncertain data mining. ICDE 2007. IEEE 23rd international conference on data engineering, 2007.

  3. Cheng R, Kalashnikov DV, Prabhakar S. Querying imprecise data in moving object environments. IEEE Trans Knowl Data Eng. 2004;16(9):1112–27.

    Article  Google Scholar 

  4. Chen L, Özsu MT, Oria V. Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD international conference on management of data, 2005.

  5. Ljosa V, Singh AK. Apla: indexing arbitrary probability distributions. In: ICDE 2007. IEEE 23rd international conference on data engineering, 2007.

  6. Taylor JG. Cognitive computation. Cogn Comput. 2009;1(1):4–16.

    Article  Google Scholar 

  7. Wöllmer M, Eyben F, Graves A, Schuller B, Rigoll G. Bidirectional lstm networks for context-sensitive keyword detection in a cognitive virtual agent framework. Cogn Comput. 2010;2(3):180–90.

    Article  Google Scholar 

  8. Mital PK, Smith TJ, Hill RL, Henderson JM. Clustering of gaze during dynamic scene viewing is predicted by motion. Cogn Comput. 2011;3(1):5–24.

    Article  Google Scholar 

  9. Cambria E, Hussain A. Sentic computing: techniques, tools, and applications. Dordrecht, Netherlands: Springer; 2012.

  10. Wang Q-F, Cambria E, Liu C-L, Hussain A. Common sense knowledge for handwritten chinese text recognition. Common sense knowledge for handwritten Chinese text recognition, 2013.

  11. Zhang C, Gao M, Zhou A. Tracking high quality clusters over uncertain data streams. ICDE. In: IEEE 25th international conference on data engineering, 2009.

  12. Wang H, Fan W, Yu PS, Han J. Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. 2003;39(4):226–35.

  13. Zhu X, Wu X, Yang Y. Dynamic classifier selection for effective mining from noisy data streams. ICDM. In: Fourth IEEE international conference on data mining, 2004.

  14. Zhang Y, Jin X. An automatic construction and organization strategy for ensemble learning on data streams. ACM SIGMOD, 2006.

  15. Tsymbal A, Pechenizkiy M, Cunningham P, Puuronen S. Dynamic integration of classifiers for handling concept drift. Inf Fusion. 2008;9(1):56–68.

    Article  Google Scholar 

  16. Kolter JZ, Maloof MA. Dynamic weighted majority: a new ensemble method for tracking concept drift. ICDM 2003. In: Third IEEE international conference on data mining, 2003.

  17. Tsymbal A. The problem of concept drift: definitions and related work. Dublin: Computer Science Department, Trinity College; 2004.

    Google Scholar 

  18. Huang G-B, Chen L, Siew C-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw. 2006;17(4):879–92.

    Article  PubMed  Google Scholar 

  19. Huang G-B, Saratchandran P, Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Trans Neural Netw. 2005;16(1):57–67.

    Article  PubMed  Google Scholar 

  20. Huang G-B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans Neural Netw. 2003;14(2):274–81.

    Article  PubMed  Google Scholar 

  21. Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine. In: Technical report ICIS/03/2004 (also in http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm), (School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore), Jan 2004.

  22. Huang G-B, Siew C-K. Extreme learning machine with randomly assigned RBF kernels. Int J Inf Technol. 2005;11(1):16–24.

    CAS  Google Scholar 

  23. Huang G-B, Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing. 2008;71:3460–8.

    Article  Google Scholar 

  24. Huang G-B, Chen Y-Q, Babri HA. Classification ability of single hidden layer feedforward neural networks. IEEE Trans Neural Netw. 2000;11(3):799–801.

    Article  CAS  PubMed  Google Scholar 

  25. Huang G-B, Chen L. Convex incremental extreme learning machine. Neurocomputing. 2007;70:3056–62.

    Article  Google Scholar 

  26. Huang G-B, Saratchandran P, Sundararajan N. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Trans Syst Man Cybern B. 2004;34(6):2284–92.

    Article  Google Scholar 

  27. Huang G-B, Chen L, Siew C-K. Universal approximation using incremental feedforward networks with arbitrary input weights. In: Technical report ICIS/46/2003. School of Electrical and Electronic Engineering: Nanyang Technological University, Singapore; Oct 2003.

  28. Huang G-B, Zhu Q-Y, Mao KZ, Siew C-K, Saratchandran P, Sundararajan N. Can threshold networks be trained directly? IEEE Trans Circuits Syst II. 2006;53(3):187–91.

    Article  Google Scholar 

  29. Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of international joint conference on neural networks (IJCNN2004), vol. 2, (Budapest, Hungary), p. 985–990, 25–9 July, 2004.

  30. Huang G-B, Siew C-K. Extreme learning machine: RBF network case. In: Proceedings of the eighth international conference on control, automation, robotics and vision (ICARCV 2004), vol. 2, (Kunming, China), p. 1029–36, 6–9 Dec 2004.

  31. Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing. 2006;70:489–501.

    Article  Google Scholar 

  32. Huang G-B, Wang DH, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern. 2011;2(2):107–22.

    Article  Google Scholar 

  33. Huang G-B, Babri HA. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans Neural Netw. 1998;9(1):224–9.

    Article  CAS  PubMed  Google Scholar 

  34. Huang G-B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern. 2012;42(2):513–29.

    Article  PubMed  Google Scholar 

  35. Fletcher R. Practical methods of optimization. Chichester: Wiley; 1987.

  36. Decherchi Sergio, Gastaldo Paolo, Zunino Rodolfo, Cambria Erik, Redi Judith. Circular-ELM for the reduced-reference assessment of perceived image quality. Neurocomputing. 2013;102(1):78–89.

    Article  Google Scholar 

  37. Gastaldo Paolo, Zunino Rodolfo, Cambria Erik, Decherchi Sergio. Combining ELM with random projections. IEEE Intell Syst. 2013;28(5):18–20.

    Google Scholar 

  38. Sun Yongjiao, Yuan Ye, Wang Guoren. Extreme learning machine for classification over uncertain data. Neurocomputing. 2013;55:500–6.

    Google Scholar 

  39. Freund Y, Schapire RE. Adecision-the oretic generalization of online learning and an application to boosting. J Comput Syst Sci. 1997;55(1):119–39.

    Article  Google Scholar 

  40. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;10(3):273–97.

    Google Scholar 

  41. Pan S, Wu K, Zhang Y, Li X. Classifier ensemble for uncertain data stream classification. In: Advances in knowledge discovery and data mining, vol. 6118. Berlin, Heidelberg: Springer; 2010. p. 488–495.

Download references

Acknowledgments

This research are supported by the NSFC (Grant No. 61173029, 61025007, 60933001, 75105487 and 61100024), National Basic Research Program of China (973, Grant No. 2011CB302200-G), National High Technology Research and Development 863 Program of China (Grant No. 2012AA011004) and the Fundamental Research Funds for the Central Universities (Grant No. N110404011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyan Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, K., Wang, G., Han, D. et al. Classification of Uncertain Data Streams Based on Extreme Learning Machine. Cogn Comput 7, 150–160 (2015). https://doi.org/10.1007/s12559-014-9279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-014-9279-7

Keywords

Navigation