Skip to main content
Log in

The Cognitive Mechanisms of Multi-scale Perception for the Recognition of Extremely Similar Faces

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

We aimed to examine the cognitive question of why human observers have difficultly in distinguishing two extremely similar faces of people of different genders, by using hybrid images (HIs). For this purpose, we proposed a computational model of the cognitive processing in the brain of multi-scale perception, which incorporates two different roles of high- and low-spatial scales in face recognition. This model was based on the multi-scale correspondence between the sizes of the filters and images in the Gabor pyramid. Multi-scale correspondence with relatively small Gabor kernels demonstrated that the scale similarity curves were qualitatively consistent with the gain functions for spatial frequency in the Gaussian filters. Locally high-scale similarities for both the low- and the high-pass filtered images indicated that the face in the HI was misrecognized as the face in the counterpart filtered image. Smaller-scale similarity differences with greater spatial frequency overlap of the low- and high-pass filters of the HI demonstrated that human observers fail to employ appropriate combinations of high- and low-scale representations to distinguish extremely similar faces. The larger Gabor kernels suggested that human observers fail to identify the face in the HI at the low resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Persson A, Moubayed SA, Loutfi A. Fluent human-robot dialogues about grounded objects in home environments. Cognit Comput. 2014;6(4):914–27.

    Article  Google Scholar 

  2. Röning J, Holappa J, Kellokumpu V, Tikanmäki A, Pietikäinen M. Minotaurus: a system for affective human-robot interaction in smart environments. Cognit Comput. 2014;6(4):940–53.

    Article  Google Scholar 

  3. http://forums.sherdog.com/forums/f48/gelebrity-look-alikes-2631919/index10.html

  4. Goffaux V, Gauthier I, Rossion B. Spatial scale contribution to early visual differences between face and object processing. Cognit Brain Res. 2003;16:416–24.

    Article  Google Scholar 

  5. Goffaux V, Hault B, Michel C, Vuong QC, Rossion B. The respective role of low and high spatial frequencies in supporting configural and featural processing of faces. Perception. 2005;34:77–86.

    Article  PubMed  Google Scholar 

  6. Liu CH, Collin CA, Rainville SJ, Chaudhuri A. The effects of spatial frequency overlap on face recognition. J Exp Psychol Hum Percept Perform. 2000;26(3):956–79.

    Article  CAS  PubMed  Google Scholar 

  7. Collin CA, Liu CH, Troje NF, McMullen PA, Chaudhuri A. Face recognition is affected by similarity in spatial frequency range to a greater degree than within-category object recognition. J Exp Psychol Hum Percept Perform. 2004;30(5):975–87.

    Article  PubMed  Google Scholar 

  8. Schyns PG, Oliva A. From blobs to boundary edges: evidence for time and spatial-scale-dependent scene recognition. Psychol Sci. 1994;5(4):195–200.

    Article  Google Scholar 

  9. Oliva A, Torralba A, Schyns PG. Hybrid images. ACM Trans Graph ACM Siggraph. 2006;25(3):527–32.

    Article  Google Scholar 

  10. Bezerianos A, Isenberg P. Perception of visual variables on tiled wall-sized displays for information visualization applications. IEEE Trans Vis Comput Graph. 2012;18(12):2516–25.

    Article  Google Scholar 

  11. Isenberg P, Dragicevic P, Willett W, Bezerianos A, Fekete J-D. Hybrid-image visualization for large viewing environments. IEEE Trans Vis Comput Graph. 2013;19(12):2346–55.

    Article  PubMed  Google Scholar 

  12. Schyns PG, Oliva A. Dr. Angry, Mr. Smile: when categorization flexibly modifies the perception of faces in rapid visual presentations. Cognition. 1999;69:243–65.

    Article  CAS  PubMed  Google Scholar 

  13. Thibos LN. Image processing by the human eye. In: Pearlman WA (ed) Proceedings of SPIE. 1989;1199:1148–1153.

  14. Sato YD, Jitsev J, von der Malsburg C. A visual object recognition system invariant to scale and rotation. Neural Netw World. 2009;19(5):529–44.

    Google Scholar 

  15. Hubel DH, Wiesel TN. Receptive fields of single neurons in the cat’s striate cortex. J Physiol. 1959;148:574–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sato YD, Jitsev J, Bornschein J, Pamplona D, Keck C, von der Malsburg C. A Gabor wavelet pyramid-based object detection algorithm. In: Liu D, et al., editors. ISNN Part II. : LNCS; 2011. pp. 232–240.

  18. Sato YD, Kuriya Y. Visual constructed representations for object recognition and detection. In: Lu B-L, et al., editors. ICONIP 2011 Part III. : LNCS; 2011. pp. 611–620.

  19. Sato YD, Kuriya Y. Multi-scale elastic graph matching for face detection. EURASIP J Adv Signal Process. 2013;2013:175.

    Article  Google Scholar 

  20. Olshausen BA, Anderson CH, Van Essen DC. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neurosci. 1993;13(11):4700–19.

    CAS  PubMed  Google Scholar 

  21. Oliva A, Torralba A. http://cvcl.mit.edu/hybrid_gallery/cat_dog.html

  22. Fukutomi T, Sato YD, Miyamoto H. Multi-scale perception model for visual illusion on hybrid image. IEEE Proceedings of International Conference on SCIS and ISIS, 2012; pp. 336–340.

  23. Lades M, Vorbruggen JC, Buhmann J, Lange J, von der Malsburg C, Wurtz RP, Konen W. Distortion invariant object recognition in the dynamic link architecture. IEEE Trans Comput. 1993;42(3):300–11.

    Article  Google Scholar 

  24. Weiss Y, Edelman S. Representation of similarity as a goal of early visual processing. Network. 1995;6:19–41.

    Article  Google Scholar 

  25. Wiskott L, Fellous J-M, Kruger N, von der Malsburg C. Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Intell. 1997;19(7):775–89.

    Article  Google Scholar 

  26. Olshausen BA, Anderson CH, Van Essen DC. A multiscale dynamic routing circuit for forming size- and position-invariant object representations. J Comput Neurosci. 1995;2(1):45–62.

    Article  CAS  PubMed  Google Scholar 

  27. Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2(11):1019–25.

    Article  CAS  PubMed  Google Scholar 

  28. Wandell BA, Brewer AA, Dougherty RF. Visual field map clusters in human cortex. Philos Trans R Soc Lond B Biol Sci. 2005;360(1456):693–707.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Arai H, Arai S. Superhybrid Image - STOP ! http://www4.ocn.ne.jp/arai/Exhibition/SuperHybridImageAnimation.html 2012

Download references

Acknowledgments

This work was partially supported by a Grant-in-Aid for Challenging Exploratory Research (to Y. D. S.) (No. 25540110) from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuomi D. Sato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, Y.D., Nagatomi, T., Horio, K. et al. The Cognitive Mechanisms of Multi-scale Perception for the Recognition of Extremely Similar Faces. Cogn Comput 7, 501–508 (2015). https://doi.org/10.1007/s12559-015-9321-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-015-9321-4

Keywords

Navigation