Skip to main content
Log in

A Likelihood-Based Qualitative Flexible Approach with Hesitant Fuzzy Linguistic Information

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The qualitative flexible multiple criteria method (QUALIFLEX) is a useful outranking method for multi-criteria decision analysis due to its flexibility in regard to cardinal and ordinal information. This paper puts forward an extended QUALIFLEX approach with a new likelihood-based comparison method to address multi-criteria decision-making problems in a hesitant fuzzy linguistic environment. The rankings produced by our new comparison method are more convincing than those obtained by existing methods, such as likelihood, distance measures, and the score function of hesitant fuzzy linguistic term sets or hesitant fuzzy linguistic elements. The proposed QUALIFLEX model, which is based on the likelihood-based comparison method, can measure the level of concordance or discordance of the complete preference order for tackling multi-criteria decision-making problems. Finally, two cases are presented as a comparative analysis between the proposed approach and other related methods. This example demonstrates the effectiveness and flexibility of the proposed methodology in the context of hesitant fuzzy linguistic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Akusok A, Miche Y, Hegedus J, Nian R, Lendasse A. A two-stage methodology using K-NN and false-positive minimizing ELM for nominal data classification. Cogn Comput. 2014;6(3):432–45.

    Article  Google Scholar 

  2. Alinezhad A, Esfandiari N. Sensitivity analysis in the QUALIFLEX and VIKOR methods. J Optim Ind Eng. 2012;5(10):29–34.

    Google Scholar 

  3. Chen SM, Hong JA. Multicriteria linguistic decision making based on hesitant fuzzy linguistic term sets and the aggregation of fuzzy sets. Inf Sci. 2014;286:63–74.

    Article  Google Scholar 

  4. Chen TY, Chang CH. Rachel Lu JF. The extended QUALIFLEX method for multiple criteria decision analysis based on interval type-2 fuzzy sets and applications to medical decision making. Eur J Oper Res. 2013;226(3):615–25.

    Article  Google Scholar 

  5. Chen TY, Tsui CW. Intuitionistic fuzzy QUALIFLEX method for optimistic and pessimistic decision making. Int J Adv Inf Sci Serv Sci. 2012;4(14):219–26.

    Google Scholar 

  6. Chen TY. Data construction process and QUALIFLEX-based method for multiple-criteria group decision making with interval-valued intuitionistic fuzzy sets. Int J Inf Technol Decis Mak. 2013;12(3):425–67.

    Article  Google Scholar 

  7. Chen TY. Interval-valued intuitionistic fuzzy QUALIFLEX method with a likelihood-based comparison approach for multiple criteria decision analysis. Inf Sci. 2014;261:149–69.

    Article  Google Scholar 

  8. Czubenko M, Kowalczuk Z, Ordys A. Autonomous driver based on an intelligent system of decision-making. Cogn Comput. 2015;7(5):569–81.

    Article  Google Scholar 

  9. Dragoni M, Tettamanzi AGB, Pereira CDC. Propagating and aggregating fuzzy polarities for concept-level sentiment analysis. Cogn Comput. 2015;7(2):186–97.

    Article  Google Scholar 

  10. Herrera F, Alonso S, Chiclana F, Herrera-Viedma E. Computing with words in decision making: foundations, trends and prospects. Fuzzy Optim Decis Mak. 2009;8(4):337–64.

    Article  Google Scholar 

  11. Herrera F, Herrera-Viedma E, Verdegay JL. A model of consensus in group decision-making under linguistic assessments. Fuzzy Sets Syst. 1996;78(1):73–87.

    Article  Google Scholar 

  12. Herrera F, Herrera-Viedma E. Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets Syst. 2000;115(1):67–82.

    Article  Google Scholar 

  13. Herrera F, Martínez L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst. 2000;8(6):746–52.

    Article  Google Scholar 

  14. Lahdelma R, Miettinen K, Salminen P. Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA). Eur J Oper Res. 2003;147(1):117–27.

    Article  Google Scholar 

  15. Lai YJ, Liu TY, Hwang CL. TOPSIS for MODM. Eur J Oper Res. 1994;76(3):486–500.

    Article  Google Scholar 

  16. Lee LW, Chen SM. Fuzzy decision making based on likelihood-based comparison relations of hesitant fuzzy linguistic tern sets and hesitant fuzzy linguistic operators. Inf Sci. 2015;294:513–29.

    Article  Google Scholar 

  17. Li ZM, Xu JP, Lev BJM, Gang J. Multi-criteria group individual research output evaluation based on context-free grammar judgments with assessing attitude. Omega. 2015;57:282–93.

    Article  Google Scholar 

  18. Liao HC, Xu ZS, Zeng XJ. Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. Inf Sci. 2014;271:125–42.

    Article  Google Scholar 

  19. Liao HC, Xu ZS. Approaches to manage hesitant fuzzy linguistic information based on the cosine distance and similarity measures for HFLTSs and their application in qualitative decision making. Expert Syst Appl. 2015;42(12):5328–36.

    Article  Google Scholar 

  20. Lin R, Zhao XF, Wei GW. Models for selecting an ERP system with hesitant fuzzy linguistic information. J Intell Fuzzy Syst. 2014;26(5):2155–65.

    Google Scholar 

  21. Liu HB, Rodríguez RM. A fuzzy envelope for hesitant fuzzy linguistic term set and its application to multicriteria decision making. Inf Sci. 2014;258:220–38.

    Article  Google Scholar 

  22. Liu PD, Liu ZM, Zhang X. Some intuitionistic uncertain linguistic Heronian mean operators and their application to group decision making. Appl Math Comput. 2014;230:570–86.

    Google Scholar 

  23. Liu PD, Wang YM. Multiple attribute group decision making methods based on intuitionistic linguistic power generalized aggregation operators. Appl Soft Comput. 2014;17:90–104.

    Article  Google Scholar 

  24. Mardani AJ, Ahmad Z, Edmundas K. Fuzzy multiple criteria decision-making techniques and applications–Two decades review from 1994 to 2014. Expert Syst Appl. 2015;42(8):4126–48.

    Article  Google Scholar 

  25. Ma YX, Wang JQ, Wang J, Wu XH. An interval neutrosophic linguistic multi-criteria group decision-making method and its application in selecting medical treatment options. Neural Comput Appl. 2016. doi:10.1007/s00521-016-2203-1.

    Google Scholar 

  26. Meng FY, Chen XH. Correlation coefficients of hesitant fuzzy sets and their application based on fuzzy measures. Cogn Comput. 2015;7(4):445–63.

    Article  Google Scholar 

  27. Meng FY, Chen XH, Zhang Q. Some interval-valued intuitionistic uncertain linguistic Choquet operators and their application to multi-attribute group decision making. Appl Math Model. 2014;38:2543–57.

    Article  Google Scholar 

  28. Meng FY, Wang C, Chen XH. Linguistic interval hesitant fuzzy sets and their application in decision making. Cogn Comput. 2015. doi:10.1007/s12559-015-9340-1.

    Google Scholar 

  29. Paelinck JHP. Qualiflex: a flexible multiple-criteria method. Econ Lett. 1978;1(3):193–7.

    Article  Google Scholar 

  30. Paelinck JHP. Qualitative multicriteria analysis: an application to airport location. Environ Plan. 1977;9(8):883–95.

    Article  Google Scholar 

  31. Paelinck JHP. Qualitative multiple criteria analysis, environmental protection and multiregional development. Pap Reg Sci. 1976;36(1):59–76.

    Article  Google Scholar 

  32. Rodríguez RM, Martínez L, Herrera F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans Fuzzy Syst. 2012;20(1):109–19.

    Article  Google Scholar 

  33. Rodríguez RM, Martínez L. An analysis of symbolic linguistic computing models in decision making. Int J Gen Syst. 2013;42:121–36.

    Article  Google Scholar 

  34. Sengupta A, Pal TK. On comparing interval numbers. Eur J Oper Res. 2000;127(1):28–43.

    Article  Google Scholar 

  35. Tian ZP, Wang J, Wang JQ, Chen XH. Multi-criteria decision-making approach based on grey linguistic weighted Bonferroni mean operator. Int Trans Oper Res. 2015. doi:10.1111/itor.12220.

    Google Scholar 

  36. Tian ZP, Wang J, Zhang HY, Chen XH, Wang JQ. Simplified neutrosophic linguistic normalized weighted Bonferroni mean operator and its application to multi-criteria decision-making problems. Filomat. 2015. doi:10.2298/FIL1508576F.

    Google Scholar 

  37. Tian ZP, Zhang HY, Wang J, Wang JQ, Chen XH. Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets. Int J Syst Sci. 2015. doi:10.1080/00207721.2015.1102359.

    Google Scholar 

  38. Wang J, Wang JQ, Zhang HY, Chen XH. Multi-criteria decision-making based on hesitant fuzzy Linguistic term sets: an outranking approach. Knowl-Based Syst. 2015;86:224–36.

    Article  Google Scholar 

  39. Wang J, Wang JQ, Zhang HY, Chen XH. Multi-criteria group decision making approach based on 2-tuple linguistic aggregation operators with multi-hesitant fuzzy linguistic information. Int J Fuzzy Syst. 2016;18(1):81–97.

    Article  Google Scholar 

  40. Wang JC, Tsao CY, Chen TY. A likelihood-based QUALIFLEX method with interval type-2 fuzzy sets for multiple criteria decision analysis. Soft Comput. 2015;19(8):2225–43.

    Article  Google Scholar 

  41. Wang JQ, Peng JJ, Zhang HY, Liu T, Chen XH. An uncertain linguistic multi-criteria group decision-making method based on a cloud model. Group Decis Negot. 2015;24(1):171–92.

    Article  Google Scholar 

  42. Wang JQ, Wang DD, Zhang HY, Chen XH. Multi-criteria group decision making method based on interval 2-tuple linguistic information and Choquet integral aggregation operators. Soft Comput. 2015;19(2):389–405.

    Article  Google Scholar 

  43. Wang JQ, Wang J, Chen QH, Zhang HY, Chen XH. An outranking approach for multi-criteria decision-making with hesitant fuzzy linguistic term sets. Inf Sci. 2014;280:338–51.

    Article  Google Scholar 

  44. Wang JQ, Wang P, Wang J, Zhang HY, Chen XH. Atanassov’s interval-valued intuitionistic linguistic multi-criteria group decision-making method based on trapezium cloud model. IEEE Trans Fuzzy Syst. 2015;23(3):542–54.

    Article  Google Scholar 

  45. Wang JQ, Wu JT, Wang J, Zhang HY, Chen XH. Multi-criteria decision-making methods based on the Hausdorff distance of hesitant fuzzy linguistic numbers. Soft Comput. 2016;20(4):1621–33.

    Article  Google Scholar 

  46. Wang YM, Yang JB, Xu DL. A preference aggregation method through the estimation of utility intervals. Comput Oper Res. 2005;32(8):2027–49.

    Article  Google Scholar 

  47. Wei CP, Ren ZL, Rodríguez RM. A hesitant fuzzy linguistic TODIM method based on a score function. Int J Comput Intell Syst. 2015;8(4):701–12.

    Article  Google Scholar 

  48. Wei CP, Zhao N, Tang XJ. Operators and comparisons of hesitant fuzzy linguistic term sets. IEEE Trans Fuzzy Syst. 2014;22(3):575–85.

    Article  Google Scholar 

  49. Xu ZX. Group decision making based on multiple types of linguistic preference relation. Inf Sci. 2008;178(2):452–67.

    Article  Google Scholar 

  50. Yager RR. Generalized OWA aggregation operators. Fuzzy Optim Decis Mak. 2004;3(1):93–107.

    Article  Google Scholar 

  51. Yang J, Gong LY, Tang YF, Yan J, He HB, Zhang LQ, Li G. An improved SVM-based cognitive diagnosis algorithm for operation states of distribution grid. Cogn Comput. 2015;7(5):582–93.

    Article  Google Scholar 

  52. Yu SM, Zhou H, Chen XH, Wang J. A multi-criteria decision-making method based on Heronian mean operators under linguistic hesitant fuzzy environment. Asia-Pac J Oper Res. 2015;32(3):1–35.

    Google Scholar 

  53. Zhang HY, Ji P, Wang J, Chen XH. A neutrosophic normal cloud and its application in decision-making. Cogn Comput. 2016. doi:10.1007/s12559-016-9394-8.

  54. Zhang XL, Xu ZS. Hesitant fuzzy QUALIFLEX approach with a signed distance-based comparison method for multiple criteria decision analysis. Expert Syst Appl. 2015;42(2):873–84.

    Article  Google Scholar 

  55. Zhang ZM, Wu C. Hesitant fuzzy linguistic aggregation operators and their applications to multiple attribute group decision making. J Intell Fuzzy Syst. 2014;26(5):2185–202.

    Google Scholar 

  56. Zhou H, Wang J, Zhang HY, Chen XH. Linguistic hesitant fuzzy multi-criteria decision-making method based on evidential reasoning. Int J Syst Sci. 2016;47(2):314–27.

    Article  Google Scholar 

  57. Zhou H, Wang J, Zhang HY. Grey stochastic multi-criteria decision-making based on regret theory and TOPSIS. Int J Mach Learn Cybern. 2015. doi:10.1007/s13042-015-0459-x.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors and anonymous reviewers for their helpful comments and suggestions that improved the paper. Moreover, the authors thank Edanz for its linguistic assistance during the preparation of the manuscript. This work was supported by the National Natural Science Foundation of China (Nos. 71271218, 71571193 and 71431006) and the Fundamental Research Funds for the Central Universities of Central South University (No. 2015zzts152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-qiang Wang.

Ethics declarations

Conflicts of Interest

Zhang-peng Tian, Jing Wang, Jian-qiang Wang and Hong-yu Zhang declare that they have no conflict of interest.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5). Additional informed consent was obtained from all patients for which identifying information is included in this article.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Appendix

Appendix

Proof of Property 1.

Proof

Only (4) of Property 1 will be proven; the proofs of the other properties are omitted.

  1. a.

    If \( H_{S}^{a + } < H_{S}^{b - } \) or \( H_{S}^{b + } < H_{S}^{a - } \), then Definition 7 reveals that \( L(H_{S}^{a} \ge H_{S}^{b} ) + L(H_{S}^{a} \le H_{S}^{b} ) = 1 \).

  2. b.

    If \( H_{S}^{a - } \le H_{S}^{b + } ,\;H_{S}^{b - } \le H_{S}^{a + } \;{\text{and}}\;H_{S}^{a - } = H_{S}^{b - } = s_{0} \), then Definition 7 reveals the following:

    $$ \begin{aligned} L(H_{S}^{a} \ge H_{S}^{b} ) & = \frac{1}{{l_{a} l_{b} }}\left( {\sum\limits_{i = 2}^{{l_{a} }} {\sum\limits_{j = 1}^{{l_{b} }} {\frac{{I(a_{i} )}}{{I(a_{i} ) + I(b_{j} )}} + \frac{1}{2}} } } \right) \\ & = \frac{1}{{l_{a} l_{b} }}\left( {\frac{{I(a_{2} )}}{{I(a_{2} ) + I(b_{1} )}} + \frac{{I(a_{2} )}}{{I(a_{2} ) + I(b_{2} )}} + \cdots + \frac{{I(a_{2} )}}{{I(a_{2} ) + I(b_{{l_{b} }} )}}} \right. \\ & \quad + \frac{{I(a_{3} )}}{{I(a_{3} ) + I(b_{1} )}} + \frac{{I(a_{3} )}}{{I(a_{3} ) + I(b_{2} )}} + \cdots + \frac{{I(a_{3} )}}{{I(a_{3} ) + I(b_{{l_{b} }} )}} + \cdots \\ & \quad + \frac{{I(a_{{l_{a} }} )}}{{I(a_{{l_{a} }} ) + I(b_{1} )}} + \frac{{I(a_{{l_{a} }} )}}{{I(a_{{l_{a} }} ) + I(b_{2} )}} + \cdots + \frac{{I(a_{{l_{a} }} )}}{{I(a_{{l_{a} }} ) + I(b_{{l_{b} }} )}} + \left. {\frac{1}{2}} \right). \\ \end{aligned} $$
    (14)
    $$ \begin{aligned} L(H_{S}^{a} \le H_{S}^{b} ) & = L(H_{S}^{b} \ge H_{S}^{a} ) = \frac{1}{{l_{a} l_{b} }}\left( {\sum\limits_{j = 2}^{{l_{b} }} {\sum\limits_{i = 1}^{{l_{a} }} {\frac{{I(b_{j} )}}{{I(b_{j} ) + I(a_{i} )}} + \frac{1}{2}} } } \right) \\ & = \frac{1}{{l_{a} l_{b} }}\left( {\frac{{I(b_{2} )}}{{I(b_{2} ) + I(a_{1} )}} + \frac{{I(b_{2} )}}{{I(b_{2} ) + I(a_{2} )}} + \cdots + \frac{{I(b_{2} )}}{{I(b_{2} ) + I(a_{{l_{a} }} )}}} \right. \\ & \quad + \frac{{I(b_{3} )}}{{I(b_{3} ) + I(a_{1} )}} + \frac{{I(b_{3} )}}{{I(b_{3} ) + I(a_{2} )}} + \cdots + \frac{{I(b_{3} )}}{{I(b_{3} ) + I(a_{{l_{a} }} )}} + \cdots \\ & \quad + \frac{{I(b_{{l_{b} }} )}}{{I(b_{{l_{b} }} ) + I(a_{1} )}} + \frac{{I(b_{{l_{b} }} )}}{{I(b_{{l_{b} }} ) + I(a_{2} )}} + \cdots + \frac{{I(b_{{l_{b} }} )}}{{I(b_{{l_{b} }} ) + I(a_{{l_{a} }} )}} + \left. {\frac{1}{2}} \right). \\ \end{aligned} $$
    (15)

By combining Eqs. (14) and (15), Eq. (16) can be obtained:

$$ \begin{aligned} & L(H_{S}^{a} \ge H_{S}^{b} ) + L(H_{S}^{a} \le H_{S}^{b} ) \\ & \quad = \frac{1}{{l_{a} l_{b} }}\left( {\frac{{I(a_{2} )}}{{I(a_{2} ) + I(b_{2} )}} + \frac{{I(b_{2} )}}{{I(b_{2} ) + I(a_{2} )}} + \frac{{I(a_{2} )}}{{I(a_{2} ) + I(b_{3} )}} + \frac{{I(b_{3} )}}{{I(b_{3} ) + I(a_{2} )}} + \cdots } \right. \\ & \quad \quad + \frac{{I(a_{2} )}}{{I(a_{2} ) + I(b_{{l_{b} }} )}} + \frac{{I(b_{{l_{b} }} )}}{{I(b_{{l_{b} }} ) + I(a_{2} )}} \\ & \quad \quad + \frac{{I(a_{3} )}}{{I(a_{3} ) + I(b_{2} )}} + \frac{{I(b_{2} )}}{{I(b_{2} ) + I(a_{3} )}} + \frac{{I(a_{3} )}}{{I(a_{3} ) + I(b_{3} )}} + \frac{{I(b_{3} )}}{{I(b_{3} ) + I(a_{3} )}} + \cdots \\ & \quad \quad + \frac{{I(a_{3} )}}{{I(a_{3} ) + I(b_{{l_{b} }} )}} + \frac{{I(b_{{l_{b} }} )}}{{I(b_{{l_{b} }} ) + I(a_{3} )}} + \cdots \\ & \quad \quad + \frac{{I(a_{{l_{a} }} )}}{{I(a_{{l_{a} }} ) + I(b_{2} )}} + \frac{{I(b_{2} )}}{{I(b_{2} ) + I(a_{{l_{a} }} )}} + \frac{{I(a_{{l_{a} }} )}}{{I(a_{{l_{a} }} ) + I(b_{3} )}} + \frac{{I(b_{3} )}}{{I(b_{3} ) + I(a_{{l_{a} }} )}} + \cdots \\ & \quad \quad + \frac{{I(a_{{l_{a} }} )}}{{I(a_{{l_{a} }} ) + I(b_{{l_{b} }} )}} + \frac{{I(b_{{l_{b} }} )}}{{I(b_{{l_{b} }} ) + I(a_{{l_{a} }} )}} \\ & \quad \quad + \frac{{I(a_{2} )}}{{I(a_{2} ) + I(b_{1} )}} + \frac{{I(a_{3} )}}{{I(a_{3} ) + I(b_{1} )}} + \cdots + \frac{{I(a_{{l_{a} }} )}}{{I(a_{{l_{a} }} ) + I(b_{1} )}} \\ & \quad \quad + \frac{{I(b_{2} )}}{{I(b_{2} ) + I(a_{1} )}} + \frac{{I(b_{3} )}}{{I(b_{3} ) + I(a_{1} )}} + \cdots + \frac{{I(b_{{l_{b} }} )}}{{I(b_{{l_{b} }} ) + I(a_{1} )}} + \left. {\frac{1}{2} + \frac{1}{2}} \right) & \\ & \quad = \frac{1}{{l_{a} l_{b} }}\left( {(l_{a} - 1)(l_{b} - 1) + (l_{a} - 1) + (l_{b} - 1) + 1} \right) = 1. \\ \end{aligned} $$
(16)
  1. c.

    If \( H_{S}^{a - } \le H_{S}^{b + } ,\;H_{S}^{b - } \le H_{S}^{a + } \;{\text{and}}\;H_{S}^{a - } \ne s_{0} \;{\text{or}}\;H_{S}^{b - } \ne s_{0} \), then, similar to Eqs. (14) and (15):

    $$ L(H_{S}^{a} \ge H_{S}^{b} ) + L(H_{S}^{a} \le H_{S}^{b} ) = \frac{1}{{l_{a} l_{b} }}(l_{a} l_{b} ) = 1. $$
    (17)

Therefore, \( L(H_{S}^{a} \ge H_{S}^{b} ) + L(H_{S}^{a} \le H_{S}^{b} ) = 1 \).

The proof is now complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Zp., Wang, J., Wang, Jq. et al. A Likelihood-Based Qualitative Flexible Approach with Hesitant Fuzzy Linguistic Information. Cogn Comput 8, 670–683 (2016). https://doi.org/10.1007/s12559-016-9400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-016-9400-1

Keywords

Navigation