Skip to main content
Log in

Human Brain Function in Path Planning: a Task Study

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Despite plenty of research being performed in the human movement science, less attention has been paid to the probable method used by the human brain in the higher-level motor planning. The previous studies suggest that the human brain may use a predictive approach to anticipate physical dynamics of the body and the environment to plan a short and collision-free movement trajectory. We propose that the human brain may use a model-based prediction procedure in path planning in which a finite prediction horizon is used to estimate the future state of the body and the environment. A goal-oriented driving task (GDT) in a virtual street was designed to consider the human path planning method in dynamic environments. Two groups of experiments were presented to consider the ability of the human brain in estimation of a dynamic object location and planning a collision-free path. The first group of study includes four GDTs, with different conditions to evaluate how the human planning strategy would change by varying the configuration of the environment. In the second group, the changes of human planning in a visually obscured and blurred situation were considered. The results are in compliance with the theory of using a model-based prediction approach by human brains and indicate that the subjects benefit from a prediction horizon to plan their paths. Our studies provide evidence to introduce possible factors which may be used by the human brain during path planning in dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Trullier O, Berthoz A, Meyer JA. Biologically-based artificial navigation systems: review and prospects. Prog Neurobiol. 1997;51(5):483–45.

    Article  CAS  PubMed  Google Scholar 

  2. Manns JR, Eichenbaum H. A cognitive map for object memory in the hippocampus. Learn Mem. 2009;16(10):616–24.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ahmadipajouh MA, Towhidkhah F, Garibzadeh S, Mashhadimalek M. Path planning in the hippocampo-prefrontal cortex pathway: an adaptive model based receding horizon planner. Med Hypotheses. 2007;68:1411–5.

    Article  Google Scholar 

  4. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB. Path integration and the neural basis of the cognitive map. Nat Rev Neuroscience. 2006;7:663–78.

    Article  CAS  PubMed  Google Scholar 

  5. Banquet JP, Gaussier P, Quoy M, Revel A, Burnod Y. A hierarchy of associations in hippocampo-cortical systems: cognitive maps and navigation strategies. Neural Comput. 2005;17:1339–84.

    Article  CAS  PubMed  Google Scholar 

  6. Tolman EC. Cognitive maps in rats and men. Psychol Rev. 1948;55:189–208.

    Article  CAS  PubMed  Google Scholar 

  7. O’keefe J, Nadel L. The hippocampus as a cognitive map. Oxford University Press; 1978.

  8. Judd SPD, Collett TS. Multiple stored views and landmark guidance in ants. Nature. 1998;392:710–4.

    Article  CAS  Google Scholar 

  9. Collett TS, Collett M. Memory use in insect visual navigation. Nature. 2002;3:542–52.

    CAS  Google Scholar 

  10. Samsonovich A, McNaughton BL. Path integration and cognitive mapping in a continuous attractor neural network model. J Neurosci. 1997;17(15):5900–20.

    CAS  PubMed  Google Scholar 

  11. Gerstner W, Abbott LF. Learning navigational maps through potentiation and modulation of hippocampal place cells. J Comput Neurosci. 1997;4(1):79–94.

    Article  CAS  PubMed  Google Scholar 

  12. Boccia M, Nemmi F, Guariglia C. Neuropsychology of environmental navigation in humans: review and meta-analysis of fMRI studies in healthy participants. Neuropsychol Rev. 2014;24:236–51.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brown TI, Carr VA, LaRocque KF, Favila SE, Gordon AM, Bowles B, Bailenson JN, Wagner AD. Prospective representation of navigational goals in the human hippocampus. Science. 2016;352(6291):1323–6.

    Article  CAS  PubMed  Google Scholar 

  14. Todorov E. Optimality principles in sensorimotor control. Nat Neurosci. 2004;7(9):907–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Todorov E, Jordan M. Optimal feedback control as a theory of motor coordination. Nat Neurosci. 2002;5(11):1226–35.

    Article  CAS  PubMed  Google Scholar 

  16. Todorov E. Studies of goal-directed movements. Thesis (Ph.D.). Massachusetts Institute of Technology: Department of Brain and Cognitive Sciences; 1998. http://dspace.mit.edu/handle/1721.1/9612#files-area.

  17. Bullock D, Grossberg S. Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev. 1988;95(1):49–90.

    Article  CAS  PubMed  Google Scholar 

  18. Pham QC, Hicheur H, Arechavaleta G, Laumond JP, Berthoz A. The formation of trajectories during goal-oriented locomotion in humans. I. A stereotyped behaviour. Eur J Neurosci. 2007;26:2376–90.

    Article  PubMed  Google Scholar 

  19. Pham QC, Hicheur H, Arechavaleta G, Laumond JP, Berthoz A. The formation of trajectories during goal-oriented locomotion in humans. II. A maximum smoothness model. Eur J Neurosci. 2007;26:2391–403.

    Article  PubMed  Google Scholar 

  20. Wiener JM, Ehbauer NN, Mallot HA. Planning paths to multiple targets: memory involvement and planning heuristics in spatial problem solving. Psychol Res. 2008;73:644–58.

    Article  PubMed  Google Scholar 

  21. Czubenko M, Kowalczuk Z, Ordys A. Autonomous driver based on an intelligent system of decision-making. Cognit Comput. 2015;7(5):569–81.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shadmehr R. Generalization as a behavioral window to the neural mechanisms of learning internal models. Hum Mov Sci. 2004;23:543–68.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wolpert DM, Flanagan JR. Motor prediction. Curr Biol. 2001;11(18):R729–32.

    Article  CAS  PubMed  Google Scholar 

  24. Towhidkhah F, Gande RE, Wood HC. Model predictive impedance control: a model for joint movement. J Mot Behav. 1997;29(3):209–22.

    Article  CAS  PubMed  Google Scholar 

  25. Pisapia ND. A framework for implicit planning, toward a cognitive/computational neuroscience theory of prefrontal cortex function. Thesis (Ph.D.), The University of Edinburge: Institute for Adaptive and Neural Computation; 2004.

  26. Domenech P, Koechlin E. Executive control and decision-making in the prefrontal cortex. Curr Opin Behav Sci. 2015;1:101–6.

    Article  Google Scholar 

  27. Gallivan JP, Culham JC, Kim KS. Neural coding within human brain areas involved in actions. Curr Opin Neurobiol. 2015;33:141–9.

    Article  CAS  PubMed  Google Scholar 

  28. Schubotz RI. Neural systems underlying the prediction of complex events. Anticipation across disciplines. Springer International. 2016;29:81–92.

    Google Scholar 

  29. Churchwell JC, Morrisb AM, Mussob ND, Kesner RP. Prefrontal and hippocampal contributions to encoding and retrieval of spatial memory. Neurobiol Learn Mem. 2010;93(3):415–21.

    Article  PubMed  Google Scholar 

  30. Fuster JM, Quintana J. From perception to action: temporal integrative functions of prefrontal and parietal neurons. Cereb Cortex. 1999;9(3):213–21.

    Article  PubMed  Google Scholar 

  31. Fuster JM. The prefrontal cortex makes the brain a preadaptive system. Proc IEEE. 2014;102(4):417–26.

    Article  Google Scholar 

  32. Koechlin E. Prefrontal executive function and adaptive behavior in complex environments. Curr Opin Neurobiol. 2016;37:1–6.

    Article  CAS  PubMed  Google Scholar 

  33. Dahmani L, Bohbot VD. Dissociable contributions of the prefrontal cortex to hippocampus-and caudate nucleus-dependent virtual navigation strategies. Neurobiol Learn Mem. 2015;117:42–50.

    Article  PubMed  Google Scholar 

  34. Schultz W. Updating dopamine reward signals. Curr Opin Neurobiol. 2013;23(2):229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilson RC, Takahashi YK, Schoenbaum G, Niv Y. Orbitofrontal cortex as a cognitive map of task space. Neuron. 2014;81(2):267–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I. Cellular networks underlying human spatial navigation. Nature. 2003;425:184–8.

    Article  CAS  PubMed  Google Scholar 

  37. Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature. 2006;442(7106):1042–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gold JI, Shadlen MN. Neural computation that underlie decisions about sensory stimuli. Tredns Cogn Sci. 2001;5(1):10–6.

    Article  Google Scholar 

  39. Wittmann MK et al. Predictive decision making driven by multiple time-linked reward representations in the anterior cingulate cortex. Nat Commun. 2016;7

  40. Cho HJ, Kim KS. Development of hazardous road fog index and its application. J East Asia Soci Transport Stud. 2005;6:3357–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Towhidkhah.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were investigated and approved by the ethical committee of the Office of Education of the Amirkabir University of Technology (# M11714).

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marghi, Y.M., Towhidkhah, F. & Gharibzadeh, S. Human Brain Function in Path Planning: a Task Study. Cogn Comput 9, 136–149 (2017). https://doi.org/10.1007/s12559-016-9443-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-016-9443-3

Keywords

Navigation