Skip to main content
Log in

An Insight into Bio-inspired and Evolutionary Algorithms for Global Optimization: Review, Analysis, and Lessons Learnt over a Decade of Competitions

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Over the recent years, continuous optimization has significantly evolved to become the mature research field it is nowadays. Through this process, evolutionary algorithms had an important role, as they are able to obtain good results with limited resources. Among them, bio-inspired algorithms, which mimic cooperative and competitive behaviors observed in animals, are a very active field, with more proposals every year. This increment in the number of optimization algorithms is apparent in the many competitions held at corresponding special sessions in the last 10 years. In these competitions, several algorithms or ideas have become points of reference, and used as starting points for more advanced algorithms in following competitions. In this paper, we have obtained, for different real-parameter competitions, their benchmarks, participants, and winners (from the competitions’ website) and we review the most relevant algorithms and techniques, presenting the trajectory they have followed over the last years and how some of these works have deeply influenced the top performing algorithms of today. The aim is to be both a useful reference for researchers new to this interesting research topic and a useful guide for current researchers in the field. We have observed that there are several algorithms, like the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), the Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE), Mean-Variance Mapping Optimization (MVMO), and Multiple Offspring Sampling (MOS), which have obtained a strong influence over other algorithms. We have also suggested several techniques that are being widely adopted among the winning proposals, and that could be used for more competitive algorithms. Global optimization is a mature research field in continuous improvement, and the history of competitions provides useful information about the past that can help us to learn how to go forward in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC-05/CEC05.htm for the CEC’2005 competitions and http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/Shared%20Documents/Forms/AllItems.aspx for the rest of CEC special sessions

  2. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC-05/CEC05.htm

  3. http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC11-RWP/CEC11-RWP.htm

  4. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2013/CEC2013.htm

  5. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014/CEC2014.htm

  6. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2015/CEC2015.htm

  7. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2016/CEC2016.htm

  8. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017/CEC2017.htm

  9. http://coco.gforge.inria.fr/doku.php?id=algorithms

  10. http://coco.gforge.inria.fr/doku.php?id=bbob-2009-algorithms

  11. http://coco.gforge.inria.fr/doku.php?id=bbob-2010

  12. http://coco.gforge.inria.fr/doku.php?id=bbob-2012

  13. http://coco.gforge.inria.fr/doku.php?id=bbob-2013

  14. http://coco.gforge.inria.fr/doku.php?id=bbob-2015

  15. https://numbbo.github.io/workshops/BBOB-2016/

  16. https://numbbo.github.io/workshops/BBOB-2017/

  17. http://bbcomp.ini.rub.de/index.html

  18. see http://bbcomp.ini.rub.de/results/BBComp2015GECCO/summary.html

  19. https://www.artelys.com/en/optimization-tools/knitro

  20. available at https://www.uni-due.de/mvmo/download

  21. at https://github.com/ash-aldujaili/NMSO

  22. see http://bbcomp.ini.rub.de/results/BBComp2015CEC/summary.html

  23. at http://bbcomp.ini.rub.de/results/BBComp2015CEC/mickey.zip

  24. at http://ls11-www.cs.uni-dortmund.de/staff/wessing/bbcomp

  25. at http://ls11-www.cs.uni-dortmund.de/staff/wessing/bbcomp

  26. http://www.ntu.edu.sg/home/epnsugan/index_files/CEC-06/CEC06.htm

  27. http://www3.ntu.edu.sg/home/EPNSugan/index_files/CEC10-Const/CEC10-Const.htm

  28. https://github.com/mikeagn/CEC2013/

  29. https://github.com/fieldsend

  30. http://goanna.cs.rmit.edu.au/~xiaodong/cec16-niching/

  31. http://www.husseinabbass.net/BigOpt.html

  32. at https://sites.google.com/site/tanaberyoji/home

References

  1. Glover F, Kochenberger GA. Handbook of metaheuristics. Springer; 2003.

  2. Xiong N, Molina D, Ortiz ML, Herrera F. A walk into metaheuristics for engineering optimization: principles, methods and recent trends. Int J Comput Intell Syst, 2015. 2015 June;8(4):606–36.

    Article  Google Scholar 

  3. Bäck T, Fogel DB, Michalewicz Z, editors. Handbook of evolutionary computation. Bristol: IOP Publishing Ltd.; 1997.

    Google Scholar 

  4. Beyer HG, Deb K. On self-adaptive features in real-parameter evolutionary algorithms. IEEE Trans Evol Comput. 2001;5(3):250–70.

    Article  Google Scholar 

  5. Xue B, Zhang M, Browne WN, Yao X. A survey on evolutionary computation approaches to feature selection. IEEE Trans Evol Comput. 2016 Aug;20(4):606–26.

    Article  Google Scholar 

  6. Goldberg DE. Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley; 1989.

    Google Scholar 

  7. Herrera F, Lozano M, Verdegay JL. Tackling real-coded genetic algorithms: operators and tools for the behavioral analysis. Artificial Intelligence Reviews. 1998;12(4):265–319.

    Article  Google Scholar 

  8. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220:671–80.

    Article  PubMed  CAS  Google Scholar 

  9. Beyer HG, Evolution Strategies SHP. Nat Comput. 2002;1:3–52.

    Article  Google Scholar 

  10. Lozano JA, Larrañaga P, Inza I, Bengotxea E. Towards a new evolutionary computation: advances on estimation of distribution algorithms: Springer Verlag; 2006.

  11. Storn R, Price K. Differential Evolution - A Simple and Efficient heuristic for global optimization over continuous spaces. J Glob Optim 1997;11:341–359.

    Article  Google Scholar 

  12. Price KV, Rainer RM, Lampinen JA. Differential evolution: a practical approach to global optimization: Springer-Verlag; 2005.

  13. Siddique N, Adeli H. Nature inspired computing: an overview and some future directions. Cogn Comput. 2015;7(6):706–14.

    Article  Google Scholar 

  14. Kumar A. Bio inspired computing—a review of algorithms and scope of applications. Expert Syst Appl. 2016;59:20–32.

    Article  Google Scholar 

  15. Paredis J. Coevolutionary computation. Artificial Life. 1995;2(4):355–75.

    Article  PubMed  CAS  Google Scholar 

  16. Smith JE. Coevolving memetic algorithms: a review and progress report. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 2007;37(1):6–17.

    Article  Google Scholar 

  17. Moscato P, Cotta C. A gentle introduction to memetic algorithms. In: Handbook of metaheuristics. Kluwer Academic Publishers, Boston, MA; 2003. p. 105–144.

  18. Chakraborty S, Dey N, Samanta S, Ashour AS, Barna C, Balas MM. Optimization of non-rigid demons registration using cuckoo search algorithm. Cogn Comput. 2017;9(6):817–26.

    Article  Google Scholar 

  19. Aljarah I, Al-Zoubi AM, Faris H, Hassonah MA, Mirjalili S, Saadeh H. Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm. Cognitive Computation. 2018;p. In press.

  20. Yahya AA, Osman A, El-Bashir MS. Rocchio algorithm-based particle initialization mechanism for effective PSO classification of high dimensional data. Swarm and Evolutionary Computation. 2017;34:18–32.

    Article  Google Scholar 

  21. Bersini H, Dorigo M, Langerman S, Seront G, Gambardella L. Results of the first international contest on evolutionary optimisation (1st ICEO). In: IEEE congress on evolutionary computation (CEC’96); 1996. p. 611–4.

    Google Scholar 

  22. Garcia S, Molina D, Lozano M, Herrera F. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics. 2009;15(6):617–44.

    Article  Google Scholar 

  23. Liao T, Molina D, de Oca M, Sützle T. A note on bound constraints handling for the IEEE CEC’05 benchmark function suite. Evol Comput. 2014;22(2):351–9.

    Article  PubMed  Google Scholar 

  24. Hansen N, Müller SD, Koumoutsakos P. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 2003;1(11):1–18, 1.

  25. Auger A, Hansen NA. Restart CMA evolution strategy with increasing population size. 2005 I.E. Congress on Evolutionary Computation. 2005:1769–76.

  26. Auger A, Hansen N. Performance evaluation of an advanced local search evolutionary algorithm. 2005 I.E. Congress on Evolutionary Computation. vol. 2. 2005:1777–84.

  27. Yuan B, Gallagher M. Experimental results for the special session on real-parameter optimization at CEC 2005: a simple, continuous EDA. 2005 I.E. Congress on Evolutionary Computation vol 2. 2005:1792–9. 2.

  28. Qin AK, Suganthan PN. Self-adaptive differential evolution algorithm for numerical optimization. In: 2005 I.E. congress on evolutionary computation. Vol. 2; 2005. p. 1785–91. 2.

    Chapter  Google Scholar 

  29. Liang JJ, Suganthan PN. Dynamic multi-swarm particle swarm optimizer with local search. In: 2005 I.E. congress on evolutionary computation. Vol. 1; 2005. p. 522–8. 1.

    Chapter  Google Scholar 

  30. S Das PNS. Problem definitions and evaluation criteria for CEC 2011 Competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, India and Nanyang; 2010.

  31. Elsayed SM, Sarker RA, Essam DL. GA with a new multi-parent crossover for solving IEEE-CEC2011 competition problems. IEEE Congress of Evolutionary Computation (CEC); 2011. p. 2011:1034–40.

  32. Reynoso-Meza G, Sanchis J, Blasco X, Herrero JM. Hybrid DE algorithm with adaptive crossover operator for solving real-world numerical optimization problems. IEEE Congress of Evolutionary Computation (CEC); 2011. p. 2011:1551–6.

  33. Elsayed SM, Sarker RA, Essam DL. Differential evolution with multiple strategies for solving CEC2011 real-world numerical optimization problems. IEEE Congress of Evolutionary Computation (CEC); 2011 p. 2011:1041–8.

  34. Liang JJ, Qu BY, Suganthan PN, Hernández-Díaz AG. Problem definitions and evaluation criteria for the CEC 2013 special session and competition on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore; 2013.

  35. Liao T, Stützle T. Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization. In: 2013 I.E. Congress on Evolutionary Computation. 2013:1938–44.

  36. Loshchilov I. CMA-ES with restarts for solving CEC 2013 benchmark problems. In: 2013 I.E. congress on evolutionary computation; 2013. p. 369–376.

  37. Hansen N, Ros R. Benchmarking a weighted negative covariance matrix update on the BBOB-2010 noiseless testbed. In: Proceedings of the 12th annual conference companion on genetic and evolutionary computation. GECCO ‘10. New York: ACM; 2010. p. 1673–80.

    Chapter  Google Scholar 

  38. Loshchilov I, Schoenauer M, Sebag M. Alternative restart strategies for CMA-ES. In: Parallel problem solving from nature - PPSN XII: 12th international conference, Taormina, Italy, September 1–5, 2012, proceedings, part I. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 296–305.

    Chapter  Google Scholar 

  39. Lacroix B, Molina D, Herrera F. Dynamically updated region based memetic algorithm for the 2013 CEC special session and competition on real parameter single objective optimization. In: 2013 I.E. congress on evolutionary computation; 2013. p. 1945–1951.

  40. Molina D, Lozano M, García-Martínez C, Herrera F. Memetic algorithms for continuous optimisation based on local search chains. Evol Comput. 2010;18(1):27–63.

    Article  PubMed  Google Scholar 

  41. Rueda JL, Erlich I. Hybrid mean-variance mapping optimization for solving the IEEE-CEC 2013 competition problems. In: 2013 I.E. congress on evolutionary computation; 2013. p. 1664–71.

    Chapter  Google Scholar 

  42. Tanabe R, Fukunaga A. Evaluating the performance of SHADE on CEC 2013 benchmark problems. In: 2013 I.E. Congress on Evolutionary Computation. 2013:1952–9.

  43. Liang JJ, Qu BY, Suganthan PN. Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University, Singapore; 2013.

  44. Liu B, Chen Q, Zhang Q, Liang JJ, Suganthan PN, Qu BY. Problem definitions and evaluation criteria for computationally expensive single objective numerical optimization. Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University, Singapore; 2013.

  45. Tanabe R, Fukunaga AS. Improving the search performance of SHADE using linear population size reduction. In: 2014 I.E. Congress on Evolutionary Computation (CEC); 2014. p. 1658–1665.

  46. Elsayed SM, Sarker RA, Essam DL, Hamza NM. Testing united multi-operator evolutionary algorithms on the CEC2014 real-parameter numerical optimization. IEEE Congress on Evolutionary Computation (CEC); 2014 p. 2014:1650–7.

  47. Erlich I, Rueda JL, Wildenhues S, Shewarega F. Evaluating the mean-variance mapping optimization on the IEEE-CEC 2014 test suite. In: 2014 I.E. Congress on Evolutionary Computation (CEC); 2014. p. 1625–1632.

  48. Molina D, Lacroix B, Herrera F. Influence of regions on the memetic algorithm for the CEC’2014 special session on real-parameter single objective optimisation. 2014 I.E. Congress on Evolutionary Computation (CEC); 2014 p:1633–40.

  49. Erlich I, Rueda JL, Wildenhues S, Shewarega F. Solving the IEEE-CEC 2014 expensive optimization test problems by using single-particle MVMO. In: 2014 I.E. Congress on Evolutionary Computation (CEC); 2014. p. 1084–1091.

  50. Liang JJ, Chen Q, Qu BY, Liu B, Suganthan PN, Chen Q. Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University; 2014.

  51. Chen Q, Liu B, Zhang Q, Liang JJ, Suganthan PN, Qu BY. Problem definition and evaluation criteria for CEC 2015 special session and competition on bound constrained single-objective computationally expensive numerical optimization. Computational Intelligence Laboratory: Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University; 2014.

    Google Scholar 

  52. Qu BY, Liang JJ, Wang ZY, Chen Q, Suganthan PN. Novel benchmark functions for continuous multimodal optimization with comparative results. Swarm and Evolutionary Computation. 2016;26:23–34.

    Article  Google Scholar 

  53. Guo SM, Tsai JSH, Yang CC, Hsu PH. A self-optimization approach for L-SHADE incorporated with eigenvector-based crossover and successful-parent-selecting framework on CEC 2015 benchmark set. In: 2015 I.E. Congress on Evolutionary Computation (CEC); 2015. p. 1003–1010.

  54. Guo SM, Yang CC, Hsu PH, Tsai JSH. Improving differential evolution with successful-parent-selecting framework. IEEE Transaction on Evolutionary Computation. 2015;19(5):717–30.

    Article  Google Scholar 

  55. Awad N, Ali MZ, Reynolds RG. A differential evolution algorithm with success-based parameter adaptation for CEC2015 learning-based optimization. In: 2015 I.E. Congress on Evolutionary Computation (CEC); 2015. p. 1098–1105.

  56. Zhang J, Sanderson AC. JADE: adaptive differential evolution with optional external archive. Evolutionary Computation, IEEE Transactions on. 2009;13(5):945–58.

    Article  Google Scholar 

  57. Rueda JL, Erlich I. Testing MVMO on learning-based real-parameter single objective benchmark optimization problems. In: 2015 I.E. Congress on Evolutionary Computation (CEC); 2015. p. 1025–1032.

  58. Sallam KM, Sarker RA, Essam DL, Elsayed SM. Neurodynamic differential evolution algorithm and solving CEC2015 competition problems. In: 2015 I.E. Congress on Evolutionary Computation (CEC); 2015. p. 1033–1040.

  59. Xia Y, Wang J. A general projection neural network for solving monotone variational inequalities and related optimization problems. IEEE Trans Neural Netw. 2004;15(2):318–28.

    Article  PubMed  Google Scholar 

  60. Rueda JL, Erlich I. MVMO for bound constrained single-objective computationally expensive numerical optimization. In: 2015 I.E. Congress on Evolutionary Computation (CEC); 2015. p. 1011–1017.

  61. Andersson M, Bandaru S, Ng AHC, Syberfeldt A. Parameter tuned CMA-ES on the CEC’15 expensive problems. In: 2015 I.E. Congress on Evolutionary Computation (CEC); 2015. p. 1950–1957.

  62. Berthier V. Experiments on the CEC 2015 expensive optimization testbed. In: 2015 I.E. Congress on Evolutionary Computation (CEC); 2015 p 1059–1066.

  63. Tanweer MR, Suresh S, Sundararajan N. Improved SRPSO algorithm for solving CEC 2015 computationally expensive numerical optimization problems. IEEE Congress on Evolutionary Computation (CEC); 2015. p. 2015:1943–9.

  64. Elsayed S, Hamza N, Sarker R. Testing united multi-operator evolutionary algorithms-II on single objective optimization problems. In: 2016 I.E. Congress on Evolutionary Computation (CEC); 2016. p. 2966–2973.

  65. Awad NH, Ali MZ, Suganthan PN, Reynolds RG. An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems. In: 2016 I.E. Congress on Evolutionary Computation (CEC); 2016. p. 2958–2965.

  66. Brest J, M Sepesy Ma˘cec BB.iL-SHADE: improved L-SHADE algorithm for single objective real-parameter optimization testing united multi-operator evolutionary algorithms-II on single objective. In: 2016 I.E. congress on evolutionary computation (CEC); 2016. p. 1188–1195.

  67. Rueda JL, Erlich I. Solving the CEC2016 real-parameter single objective optimization problems through MVMO-PHM: Delft University of Technology and University Duisburg-Essen; 2016.

  68. Poláková R, Tvrdík J, Bujok P. L-SHADE with competing strategies applied to CEC2015 learning-based test suite. In: 2016 I.E. Congress on Evolutionary Computation (CEC); 2016. p. 4790–4796.

  69. Omidvar MN, Li X, Mei Y, Yao X. Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans Evol Comput. 2014;18(3):378–93.

    Article  Google Scholar 

  70. E Ampellio LV. A hybrid ABC for expensive optimizations: CEC 2016 competition benchmark. In: 2016 I.E. Congress on Evolutionary Computation (CEC); 2016. p. 1157–1164.

  71. Punnathanam V, Kotecha P. Reduced yin-Yang-pair optimization and its performance on the CEC 2016 expensive case. In: 2016 I.E. Congress on Evolutionary Computation (CEC); 2016 p 2996–3002.

  72. Punnathanam V, Kotecha P. Yin-Yang-pair optimization: a novel lightweight optimization algorithm. Eng Appl Artif Intell. 2016;54:62–79.

    Article  Google Scholar 

  73. Brest J, Maucec MS, Boskovic B. Single objective real-parameter optimization: algorithm jSO. In: 2017 I.E. Congress on Evolutionary Computation (CEC); 2017. p. 1311–1318.

  74. Awad N, Ali M, Suganthan PN. Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In: 2017 I.E. Congress on Evolutionary Computation (CEC); 2017. p. 372–379.

  75. Mohamed A, Hadi A, Fattouh A, Jambi K. LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems. In: 2017 I.E. Congress on Evolutionary Computation (CEC); 2017 p 145–152.

  76. Tanweer MR, Sundaram S, Sundararajan N. Development of a higher order cognitive optimization algorithm. In: 2017 I.E. Congress on Evolutionary Computation (CEC); 2017. p. 2752–2758.

  77. Hansen N, Auger A, Mersmann O, Tusar T, Brockhoff D. COCO: a platform for comparing continuous optimizers in a black-box setting. ArXiv e-prints. 2016.

  78. Hansen N, Auger A, Ros R, Finck S, Pošík P. Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. In: Proceedings of the 12th annual conference companion on genetic and evolutionary computation. GECCO ‘10. New York: ACM; 2010. p. 1689–96.

    Chapter  Google Scholar 

  79. Hansen N. Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed. In: Proceedings of the 11th annual conference companion on genetic and evolutionary computation conference: late breaking papers. GECCO ‘09. New York: ACM; 2009. p. 2389–96.

    Chapter  Google Scholar 

  80. Bosman PAN, Grahl J, Thierens D, AMaLGaM IDEA. In noiseless black-box optimization benchmarking. In: Proceedings of the 11th annual conference companion on genetic and evolutionary computation conference: late breaking papers. GECCO ‘09. New York: ACM; 2009. p. 2247–54.

    Chapter  Google Scholar 

  81. LaTorre A, Muelas S, Peña JM. Benchmarking a MOS-based algorithm on the BBOB-2010 noiseless function testbed. In: Proceedings of the 12th annual conference companion on genetic and evolutionary computation. GECCO ‘10. New York: ACM; 2010. p. 1649–56.

    Chapter  Google Scholar 

  82. LaTorre A, Muelas S, Peña JM. A MOS-based dynamic memetic differential evolution algorithm for continuous optimization: a scalability test. Soft Computing - A Fusion of Foundations, Methodologies and Applications. 2011;15(11):2187–99.

    Google Scholar 

  83. Loshchilov I, Schoenauer M, Sebag M. Black-box Optimization Benchmarking of IPOP-saACM-ES on the BBOB-2012 Noisy Testbed. In: Proceedings of the 14th annual conference companion on genetic and evolutionary computation. In GECCO ‘12 Proceeding; 2012. p. 261–268.

  84. Loshchilov I, Saclay TI, Schoenauer M, Sebag M. Self-Adaptive Surrogate-Assisted Covariance Matrix Adaptation Evolution Strategy. In: Proceedings of the 14th annual conference companion on genetic and evolutionary computation. In GECCO’2012 Proceedings; 2012. p. 321–328.

  85. Loshchilov I, Schoenauer M, Sebag M. Black-box optimization benchmarking of NIPOP-aCMA-ES and NBIPOP-aCMA-ES on the BBOB-2012 noiseless testbed. In: Proceedings of the 14th annual conference companion on genetic and evolutionary computation. GECCO ‘12. New York: ACM; 2012. p. 269–76.

    Google Scholar 

  86. Loshchilov I, Schoenauer M, Sebag M. BI-population CMA-ES algorithms with surrogate models and line searches. In: BBOB workshop of genetic and evolutionary computation conference (GECCO 2013); 2013. p. 1177–84.

    Google Scholar 

  87. Pál L. Benchmarking a hybrid multi level single linkage algorithm on the Bbob noiseless testbed. In: Proceedings of the 15th annual conference companion on genetic and evolutionary computation. GECCO ‘13 companion. New York: ACM; 2013. p. 1145–52.

    Google Scholar 

  88. Ulmer H, Streichert F, Zell A. Evolution strategies assisted by Gaussian processes with improved pre-selection criterion. In: in IEEE Congress on Evolutionary Computation,CEC 2003; 2003. p. 692–699.

  89. Atamna A. Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB noiseless testbed. In: Proceedings of the companion publication of the 2015 annual conference on genetic and evolutionary computation. GECCO ‘15 companion. ACM; 2015. p. 1135–42.

    Chapter  Google Scholar 

  90. Tanabe R, Fukunaga A. Tuning differential evolution for cheap, medium, and expensive computational budgets. In: 2015 I.E. Congress on Evolutionary Computation (CEC); 2015. p. 2018–2025.

  91. Nishida K, Akimoto Y. Evaluating the population size adaptation mechanism for CMA-ES on the BBOB noiseless testbed. In: Proceedings of the 2016 on genetic and evolutionary computation conference companion. GECCO ‘16 companion; 2016. p. 1185–92.

    Chapter  Google Scholar 

  92. Nishida K, Akimoto Y. Evaluating the population size adaptation mechanism for CMA-ES on the BBOB noisy testbed. In: Proceedings of the 2016 on genetic and evolutionary computation conference companion. GECCO ‘16 companion; 2016. p. 1193–200.

    Chapter  Google Scholar 

  93. Nguyen DM, Hansen N. Benchmarking CMAES-APOP on the BBOB noiseless testbed. In: Proceedings of the genetic and evolutionary computation conference companion. GECCO ‘17; 2017. p. 1756–63.

    Chapter  Google Scholar 

  94. Pitra Z, Bajer L, Repický J, Holeňa M. Comparison of ordinal and metric Gaussian process regression as surrogate models for CMA evolution strategy. In: Proceedings of the genetic and evolutionary computation conference companion. GECCO ‘17. New York, NY, USA; 2017. p. 1764–71.

    Chapter  Google Scholar 

  95. Yamaguchi T, Akimoto Y. Benchmarking the novel CMA-ES restart strategy using the search history on the BBOB noiseless testbed. In: Proceedings of the genetic and evolutionary computation conference companion. GECCO ‘17. New York, NY, USA; 2017. p. 1780–7.

    Chapter  Google Scholar 

  96. Aydin D, Yavuz G. Self-adaptive search equation-based artificial bee colony algorithm with CMA-ES on the noiseless BBOB testbed. In: Proceedings of the genetic and evolutionary computation conference companion. GECCO ‘17. New York, NY, USA; 2017. p. 1742–9.

    Chapter  Google Scholar 

  97. García-Valdez M, Merelo JJ. Benchmarking a pool-based execution with GA and PSO workers on the BBOB noiseless testbed. In: Proceedings of the genetic and evolutionary computation conference companion. GECCO ‘17. New York, NY, USA; 2017. p. 1750–5.

    Chapter  Google Scholar 

  98. Byrd RH, Nocedal J, Waltz RA. Knitro: an integrated package for nonlinear optimization. Boston, MA: Springer US; 2006.

  99. Al-Dujaili A, Suresh S. A naive multi-scale search algorithm for global optimization problems. Inf Sci. 2016;372:294–312.

    Article  Google Scholar 

  100. Wessing S. Two-stage methods for multimodal optimization [PhD dissertation]. In: techniche universität dortmund; 2015.

    Google Scholar 

  101. Jiménez AJ. Sparse Hessian factorization in curved trajectories for unconstrained minimization. Optimization Methods and Software. 2014;29(1):1–9.

    Article  Google Scholar 

  102. Beume N, Naujoks B, Emmerich M. SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res. 2007;181(3):1653–69.

    Article  Google Scholar 

  103. Feliot P, Bect J, Vazquez E. A Bayesian approach to constrained single- and multi-objective optimization. J Glob Optim. 2017 Jan;67(1):97–133.

    Article  Google Scholar 

  104. Mezura-Montes E, Coello Coello CA. Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm and Evolutionary Computation. 2011;1(4):173–194. Cited By 216.

  105. Takahama T, Sakai S. Constrained optimization by the constrained differential evolution with gradient-based mutation and feasible elites. In: 2006 I.E. international conference on. Evol Comput. 2006:1–8.

  106. Huang VL, Qin AK, Suganthan PN. Self-adaptive differential evolution algorithm for constrained real-parameter optimization. In: 2006 I.E. international conference on evolutionary computation; 2006. p. 17–24.

    Chapter  Google Scholar 

  107. Mallipeddi R, Suganthan PN. Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization. Singapore: Nanyang Technological University; 2010.

    Google Scholar 

  108. Tseng LY, Chen C. Multiple trajectory search for large scale global optimization. In: 2008 I.E. congress on evolutionary computation (CEC 2008); 2008. p. 3052–9.

    Google Scholar 

  109. Takahama T, Sakai S. Constrained optimization by the constrained differential evolution with an archive and gradient-based mutation. IEEE Congress on Evolutionary Computation. 2010:1–9.

  110. Mallipeddi R, Suganthan PN. Differential evolution with ensemble of constraint handling techniques for solving CEC 2010 benchmark problems. IEEE Congress on Evolutionary Computation. 2010:1–8.

  111. Dasa S, Maity S, Qu BY, Suganthan PN. Real-parameter evolutionary multimodal optimization-A survey of the state-of-the-art. Swarm and Evolutionary Computation. 2011;1(2):71–78. Cited By 110.

  112. Li X, Engelbrecht A, Epitropakis MG. Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization’. Melbourne: Evolutionary Computation and Machine Learning Group, RMIT University; 2013.

    Google Scholar 

  113. Preuss M. Niching the CMA-ES via nearest-better clustering. In: Proceedings of the 12th annual conference companion on genetic and evolutionary computation. GECCO ‘10. New York: ACM; 2010. p. 1711–8.

    Chapter  Google Scholar 

  114. Preuss M, Schönemann L, Emmerich M. Counteracting genetic drift and disruptive recombination in (μ Pluskomma λ)-EA on multimodal fitness landscapes. In: Proceedings of the 7th annual conference on genetic and evolutionary computation. GECCO ‘05. New York: ACM; 2005. p. 865–72.

    Google Scholar 

  115. Epitropakis MG, Li X, Burke EKA. Dynamic archive niching differential evolution algorithm for multimodal optimization. In: 2013 I.E. congress on evolutionary computation; 2013. p. 79–86.

    Chapter  Google Scholar 

  116. Molina D, Puris A, Bello R, Herrera F. Variable mesh optimization for the 2013 CEC special session niching methods for multimodal optimization. In: 2013 I.E. congress on evolutionary computation; 2013. p. 87–94.

    Chapter  Google Scholar 

  117. Fieldsend JE. Using an adaptive collection of local evolutionary algorithms for multi-modal problems. Soft Comput. 2015;19(6):1445–60.

    Article  Google Scholar 

  118. Ahrari A, Deb K, Preuss M. Multimodal optimization by covariance matrix self-adaptation evolution strategy with repelling subpopulations. Evol Comput. 2016 Apr:1–33.

  119. Beyer HG, Sendhoff B. Covariance matrix adaptation revisited—the CMSA evolution strategy. Lect Notes Comput Sci. 2008:123–32.

  120. Fieldsend JE. Running up those hills: multi-modal search with the niching migratory multi-swarm optimiser. In: 2014 I.E. Congress on Evolutionary Computation (CEC); 2014. p. 2593–2600.

  121. Chen S, Montgomery J, Röhler AB. Measuring the curse of dimensionality and its effects on particle swarm optimization and differential evolution. Appl Intell. 2015;42(3):514–26.

    Article  Google Scholar 

  122. Tang K, Yao X, Suganthan PN, MacNish C, Chen YP, Chen CM, et al. Benchmark functions for the CEC 2008 special session and competition on large scale global optimization. In: China; 2007.

    Google Scholar 

  123. Lozano M, Molina D, Herrera F. Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems. Soft Computing—A Fusion of Foundations, Methodologies and Applications. 2011;15:2085–7.

    Google Scholar 

  124. Tang K. Summary of results on CEC’08 competition on large scale global. Optimization. 2008;

  125. Wang Y, Li BA. Restart univariate estimation of distribution algorithm: sampling under mixed Gaussian and Lévy probability distributions. In: 2008 I.E. congress on evolutionary computation (CEC 2008); 2008. p. 3917–24.

    Google Scholar 

  126. Brest J, Zamuda A, Boskovic B, Maucec MS, Zumer V. High-dimensional real-parameter optimization using self-adaptive differential evolution algorithm with population size reduction. In: 2008 I.E. congress on evolutionary computation (CEC 2008); 2008. p. 2032–9.

    Google Scholar 

  127. Hsieh ST, Sun TY, Liu CC, Tsai SJ. Solving large scale global optimization using improved particle swarm optimizer. In: 2008 I.E. congress on evolutionary computation (CEC 2008); 2008. p. 1777–84.

    Google Scholar 

  128. Zhao SZ, Liang JJ, Suganthan PN, Tasgetiren MF. Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization. In: 2008 I.E. congress on evolutionary computation (CEC 2008); 2008. p. 3845–52.

    Google Scholar 

  129. MacNish C, Yao X. Direction matters in high-dimensional optimisation. In: 2008 I.E. congress on evolutionary computation (CEC 2008); 2008. p. 2372–9.

    Google Scholar 

  130. Zamuda A, Brest J, Bošković B, Zumer V. Large scale global optimization using differential evolution with self-adaptation and cooperative co-evolution. In: 2008 I.E. congress on evolutionary computation (CEC 2008); 2008. p. 3718–25.

    Google Scholar 

  131. Yang Z, Tang K, Yao X. Multilevel cooperative coevolution for large scale optimization. In: 2008 I.E. congress on evolutionary computation (CEC 2008); 2008. p. 1663–70.

    Google Scholar 

  132. Tang K, Li X, Suganthan P, Yang Z, Weise T. Benchmark functions for the CEC’2010 special session and competition on large scale global. Optimization. 2010;

  133. Molina D, Lozano M, Herrera F. MA-SW-chains: memetic algorithm based on local search chains for large scale continuous global optimization. 2010 I.E. Congress on Evolutionary Computation (CEC 2010). 2010:3153–60.

  134. Wang Y, Li B. Two-stage based ensemble optimization for large-scale global optimization. In: 2010 I.E. congress on evolutionary computation (CEC 2010). Barcelona; 2010. p. 4488–4495.

  135. Korosec P, Tashkova K, Silc J. The differential ant-Stigmergy algorithm for large-scale global optimization. In: 2010 I.E. congress on evolutionary computation (CEC 2010); 2010. p. 4288–95.

    Google Scholar 

  136. Brest J, Zamuda A, Fister I, Maucec MS. Large scale global optimization using self-adaptive differential evolution algorithm. In: 2010 I.E. congress on evolutionary computation (CEC 2010); 2010. p. 3097–104.

    Google Scholar 

  137. Omidvar MN, Li X, Yao X. Cooperative co-evolution with delta grouping for large scale non-separable function optimization. In: 2010 I.E. congress on evolutionary computation (CEC 2010); 2010. p. 1762–9.

    Google Scholar 

  138. Wang H, Wu Z, Rahnamayan S, Jiang D. Sequential DE enhanced by neighborhood search for large scale global optimization. In: 2010 I.E. congress on evolutionary computation (CEC 2010); 2010. p. 4056–62.

    Google Scholar 

  139. Zhao SZ, Suganthan PN, Das S. Dynamic multi-swarm particle swarm optimizer with sub-regional harmony search. In: 2010 I.E. Congress on Evolutionary Computation (CEC 2010). 2010:1983–90.

  140. Brest J, Maučec MS. Self-adaptive differential evolution algorithm using population size reduction and three strategies. Soft Computing—A Fusion of Foundations, Methodologies and Applications. 2011;15(11):2157–74.

    Google Scholar 

  141. García-Martínez C, Rodríguez FJ, Lozano M. Role differentiation and malleable mating for differential evolution: an analysis on large-scale optimisation. Soft Computing—A Fusion of Foundations, Methodologies and Applications. 2011;15(11):2109–26.

    Google Scholar 

  142. Wang H, Wu Z, Rahnamayan S. Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems. Soft Computing—A Fusion of Foundations, Methodologies and Applications. 2011;15(11):2127–40.

    Google Scholar 

  143. Weber M, Neri F, Tirronen V. Shuffle or update parallel differential evolution for large-scale optimization. Soft Computing—A Fusion of Foundations, Methodologies and Applications. 2011;15(11):2089–107.

    Google Scholar 

  144. Yang Z, Tang K, Yao X. Scalability of generalized adaptive differential evolution for large-scale continuous optimization. Soft Computing—A Fusion of Foundations, Methodologies and Applications. 2011;15:2141–55.

    Google Scholar 

  145. Zhao SZ, Suganthan PN, Das S. Self-adaptive differential evolution with multi-trajectory search for large-scale optimization. Soft Computing—A Fusion of Foundations, Methodologies and Applications. 2011;15(11):2175–85.

    Google Scholar 

  146. García-Nieto J, Alba E. Restart particle swarm optimization with velocity modulation: a scalability test. Soft Computing—A Fusion of Foundations, Methodologies and Applications. 2011;15(11):2221–32.

    Google Scholar 

  147. Montes de Oca MA, Aydın D, Stützle T. An incremental particle swarm for large-scale continuous optimization problems: an example of tuning-in-the-loop (re) design of optimization algorithms. Soft computing—a fusion of foundations. Methodologies and Applications. 2011;15:2233–55.

    Google Scholar 

  148. Duarte A, Martí R, Gortazar F. Path relinking for large-scale global optimization. Soft Computing—A Fusion of Foundations, Methodologies and Applications. 2011;15(11):2257–73.

    Google Scholar 

  149. Gardeux V, Chelouah R, Siarry P, Glover F. EM323: a line search based algorithm for solving high-dimensional continuous non-linear optimization problems. Soft Computing—A Fusion of Foundations, Methodologies and Applications. 2011;15(11):2275–85.

    Google Scholar 

  150. Molina D, Lozano M, Sánchez AM, Herrera F. Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-Chains. Soft Computing—A Fusion of Foundations, Methodologies and Applications. 2011;15(11):2201–2220.

  151. Neumaier A, Fendl H, Schilly H, Leitner T. VXQR: derivative-free unconstrained optimization based on QR factorizations. Soft Computing—A Fusion of Foundations, Methodologies and Applications. 2011;15(11):2287–98.

    Google Scholar 

  152. Puris A, Bello R, Molina D, Herrera F. Variable mesh optimization for continuous optimization problems. Soft Computing—A Fusion of Foundations, Methodologies and Applications. 2011;16(3):511–25.

    Google Scholar 

  153. LaTorre A, Muelas S, Peña JM. Multiple offspring sampling in large scale global optimization. In: 2012 I.E. congress on evolutionary computation (CEC 2012). Brisbane, Australia; 2012. p. 964–71.

    Google Scholar 

  154. Brest J, Bošković B, Zamuda A, Fister I, Maučec MS. Self-adaptive differential evolution algorithm with a small and varying population size. In: 2012 I.E. congress on evolutionary computation (CEC 2012). Brisbane; 2012. p. 1–8.

    Google Scholar 

  155. Zhang K, Li B. Cooperative coevolution with global search for large scale global optimization. In: 2012 I.E. congress on evolutionary computation (CEC 2012). Brisbane; 2012. p. 1–7.

    Google Scholar 

  156. Takahama T, Sakai S. Large scale optimization by differential evolution with landscape modality detection and a diversity archive. In: 2012 I.E. congress on evolutionary computation (CEC 2012); 2012. p. 1–8.

    Google Scholar 

  157. Fister I, Fister Jr I, Brest J, Zumer JB. Memetic artificial bee colony algorithm for large-scale global optimization. In: 2012 I.E. congress on evolutionary computation (CEC 2012); 2012. p. 1–8.

    Google Scholar 

  158. Li X, Tang K, Omidvar MN, Yang Z, Quin K. Benchmark functions for the CEC’2013 special session and competition on large scale global optimization: RMIT University; 2013.

  159. LaTorre A, Muelas S, Peña JM. Large scale global optimization: experimental results with MOS-based hybrid algorithms. In: 2013 I.E. congress on evolutionary computation (CEC 2013). Cancún, Mexico; 2013. p. 2742–9.

    Chapter  Google Scholar 

  160. Wei F, Wang Y, Huo Y. Smoothing and auxiliary functions based cooperative coevolution for global optimization. In: 2013 I.E. congress on evolutionary computation (CEC 2013); 2013. p. 2736–41.

    Chapter  Google Scholar 

  161. Yang Z, Tang K, Yao X. Large scale evolutionary optimization using cooperative coevolution. Inf Sci. 2008;178(15):2985–99.

    Article  Google Scholar 

  162. Liu J, Tang K. Scaling up covariance matrix adaptation evolution strategy using cooperative coevolution. Birmingham. 2013;

  163. López ED, Puris A, Bello RR. VMODE: a hybrid metaheuristic for the solution of large scale optimization problems. Revista Investigación Operacional. 2015;36(3):232–9.

    Google Scholar 

  164. Mahdavi S, Shiri ME, Rahnamayan S. Cooperative co-evolution with a new decomposition method for large-scale optimization. In: 2014 I.E. congress on evolutionary computation (CEC 2014); 2014. p. 1285–92.

    Chapter  Google Scholar 

  165. Ye S, Dai G, Peng L, Wang M. A hybrid adaptive coevolutionary differential evolution algorithm for large-scale optimization. In: 2014 I.E. congress on evolutionary computation (CEC 2014); 2014. p. 1277–84.

    Chapter  Google Scholar 

  166. Wei F, Wang Y, Zong T. Variable grouping based differential evolution using an auxiliary function for large scale global optimization. In: 2014 I.E. congress on evolutionary computation (CEC 2014); 2014. p. 1293–8.

    Chapter  Google Scholar 

  167. Molina D, Herrera F. Iterative hybridization of DE with local search for the CEC’2015 special session on large scale global optimization. In: 2015 I.E. Congress on Evolutionary Computation (CEC 2015). 2015:1974–8.

  168. Miranda V, Alves R. Differential Evolutionary Particle Swarm Optimization (DEEPSO): a successful hybrid. In: 2013 BRICS Congress on Computational Intelligence & 11th Brazilian Congress on Computational Intelligence (BRICS-CCI & CBIC 2013). 2013:368–74.

  169. Dai G, Chen X, Chen L, Wang M, Peng L. Cooperative coevolution with dependency identification grouping for large scale global optimization. In: 2016 I.E. congress on evolutionary computation (CEC 2016); 2016. p. 5201–8.

    Chapter  Google Scholar 

  170. Salcedo-Sanz S, Camacho-Gómez C, Molina D, Herrera F. A Coral reefs optimization algorithm with substrate layers and local search for large scale global optimization. In: 2016 I.E. congress on evolutionary computation (CEC 2016); 2016. p. 3574–81.

    Chapter  Google Scholar 

  171. Mahdavi S, Rahnamayan S, Deb K. Center-based initialization of cooperative co-evolutionary algorithm for large-scale optimization. In: 2016 I.E. congress on evolutionary computation (CEC 2016); 2016. p. 3357–565.

    Google Scholar 

  172. Omidvar MN, Kazimipour B, Li X, Yao X. CBCC3—a contribution-based cooperative co-evolutionary algorithm with improved exploration/exploitation balance. In: 2016 I.E. congress on evolutionary computation (CEC 2016); 2016. p. 3541–8.

    Chapter  Google Scholar 

  173. Cano A, García-Martínez C. 100 million dimensions large-scale global optimization using distributed GPU computing. In: 2016 I.E. congress on evolutionary computation (CEC 2016); 2016. p. 3566–73.

    Chapter  Google Scholar 

  174. Goh SK, Tan KC, Mamun AA, Abbass HA. Evolutionary big optimization (BigOpt) of signals. In: IEEE congress on evolutionary computation, CEC 2015, Sendai, Japan. May 25–28, 2015. 2015:3332–9.

  175. Zhang Y, Zhou M, Jiang Z, Liu J. A multi-agent genetic algorithm for big optimization problems. IEEE Congress on Evolutionary Computation (CEC); 2015. p. 2015:703–7.

  176. Omidvar MN, Li X, Mei Y, Yao X. Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans Evol Comput. 2014 June;18(3):378–93.

    Article  Google Scholar 

  177. LaTorre A, Muelas S, Peña JMA. Comprehensive comparison of large scale global optimizers. Inf Sci. 2014;316:517–49.

    Article  Google Scholar 

  178. Tang Q, Shen Y, Hu C, Zeng J, Gong W. Swarm intelligence: based cooperation optimization of multi-modal functions. Cogn Comput. 2013;5(1):48–55.

    Article  Google Scholar 

  179. Kennedy J, Eberhart RC. Particle swarm optimization. IEE International Conference on Neural Networks. 1995:1942–8.

  180. Yang XS. Bat algorithm: literature review and applications. International Journal of Bio-Inspired Computation 2013 08. 2013;5:141–9.

    Article  Google Scholar 

  181. Apostolopoulos T, Vlachos A. Application of the firefly algorithm for solving the economic emissions load dispatch problem. Hindawi publishing corporation international. J Comb. 2011;23:1–23.

    Google Scholar 

  182. Amiri B, Hossain L, Crawford JW, Wigand RT. Community detection in complex networks: multi–objective enhanced firefly algorithm. Knowl-Based Syst. 2013;46:1–11.

    Article  Google Scholar 

  183. Saremi S, Mirjalili S, Lewis A. Grasshopper optimisation algorithm: theory and application. Adv Eng Softw. 2017;105:30–47.

    Article  Google Scholar 

  184. An J, Kang Q, Wang L, Wu Q. Mussels wandering optimization: an ecologically inspired algorithm for global optimization. Cogn Comput. 2013;5:188–99.

    Article  Google Scholar 

  185. Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 1996 Feb;26(1):29–41.

    Article  CAS  Google Scholar 

  186. Dorigo M, Stützle T. Ant colony optimization. MIT Press; 2004.

  187. Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim. 2007;39(3):459–71.

    Article  Google Scholar 

  188. Mirjalili S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput & Applic. 2016 May;27(4):1053–73.

    Article  Google Scholar 

  189. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw. 2014;69:46–61.

    Article  Google Scholar 

  190. Kaveh A, Farhoudi N. A new optimization method: dolphin echolocation. Adv Eng Softw. 2013;59:53–70.

    Article  Google Scholar 

  191. Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw. 2016;95:51–67.

    Article  Google Scholar 

  192. Salcedo-Sanz S, Casanova-Mateo C, Pastor-Sánchez A, Sánchez-Girón M. Daily global solar radiation prediction based on a hybrid coral reefs optimization—extreme learning machine approach. Sol Energy. 2014;105:91–8.

    Article  Google Scholar 

  193. Gandomi AH, Alavi AH. Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul. 2012;17(12):4831–45.

    Article  Google Scholar 

  194. Timmis J, Andrews P, Hart E. On artificial immune systems and swarm intelligence. Swarm Intelligence. 2010;4:247–73.

    Article  Google Scholar 

  195. Kim SS, McLoone S, Byeon JH, Lee S, Liu H. Cognitively inspired artificial bee colony clustering for cognitive wireless sensor networks. Cogn Comput. 2017 Apr;9(2):207–24.

    Article  Google Scholar 

  196. Ong YS, Gupta A. Evolutionary multitasking: a computer science view of cognitive multitasking. Cogn Comput. 2016;8(2):125–42.

    Article  Google Scholar 

  197. Javed SG, Majid A, Ali S, Kausar N. A bio-inspired parallel-framework based multi-gene genetic programming approach to Denoise biomedical images. Cogn Comput. 2016;8(4):776–93.

    Article  Google Scholar 

  198. Zeng N, Wang Z, Zhang H, Alsaadi FE. A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay. Cogn Comput. 2016;8(2):143–52.

    Article  Google Scholar 

  199. Song B, Wang Z, Zou L. On global smooth path planning for mobile robots using a novel multimodal delayed PSO algorithm. Cogn Comput. 2017;9(1):5–17.

    Article  Google Scholar 

  200. Siddique N, Adeli H. Nature-inspired chemical reaction optimisation algorithms. Cogn Comput. 2017;9(4):411–22.

    Article  Google Scholar 

  201. Wu T, Yao M, Yang J. Dolphin swarm extreme learning machine. Cogn Comput. 2017;9(2):275–84.

    Article  Google Scholar 

  202. Solé R, Amor DR, Duran-Nebreda S, Conde-Pueyo N, Carbonell-Ballestero M, Montañez R. Synthetic collective intelligence. Biosystems. 2016;148:47–61. What Synthetic Biology can offer to Artificial Intelligence

    Article  PubMed  Google Scholar 

  203. Sörensen K. Metaheuristics—the metaphor exposed. Int Trans Oper Res. 2015;22:3–18.

    Article  Google Scholar 

  204. García-Martínez C, Gutiérrez PD, Molina D, Lozano M, Herrera F. Since CEC 2005 competition on real-parameter optimisation: a decade of research, progress and comparative analysis’s weakness. Soft Comput. 2017:1–11.

  205. Liao T, Molina D, Stützle T. Performance evaluation of automatically tuned continuous optimizers on different benchmark sets. Appl Soft Comput. 2015;27:490–503.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Spanish Ministry of Science and the European Fund (FEDER) under projects (TIN2014-57481-C2-2-R, TIN2016-8113-R, TIN2017-83132-C2-2-R, TIN2017-89517-P) and Regional Government (P12-TIC-2958).

Funding

This work was supported by grants from the Spanish Ministry of Science and the European Fund (FEDER) under projects (TIN2014-57481-C2-2-R, TIN2016-8113-R, TIN2017-83132-C2-2-R, TIN2017-89517-P) and Regional Government (P12-TIC-2958).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Molina.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Appendix: List of algorithms in competitions

Appendix: List of algorithms in competitions

In order to summarize the most relevant algorithms in the different competitions covered by the paper, Tables 2, 3, 4, 5, and 6 show this information, grouped by benchmark and conference and ordered according to their ranking in the corresponding competitions. In particular, Tables 2 and 3 show the more relevant algorithms in global optimization for the different CEC and BBOB benchmarks, respectively. On the other hand, Table 4 shows the algorithms in the Black-Box Competition for the different conferences, whereas Table 5 shows the algorithms for other competitions such as constraint and multimodal optimization. Finally, Table 6 summarizes the information of the algorithms for large-scale global optimization.

Table 2 List of algorithms in CEC global competitions (sorted by ranking)
Table 3 List of the most relevant algorithms in the Black-Box Optimization Benchmark competitions
Table 4 List of the most relevant algorithms in the Black-Box Benchmark competitions (BBComp)
Table 5 List of the most relevant algorithms in other competitions
Table 6 List of the most relevant algorithms in Large-Scale Global Optimization competitions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, D., LaTorre, A. & Herrera, F. An Insight into Bio-inspired and Evolutionary Algorithms for Global Optimization: Review, Analysis, and Lessons Learnt over a Decade of Competitions. Cogn Comput 10, 517–544 (2018). https://doi.org/10.1007/s12559-018-9554-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-018-9554-0

Keywords

Navigation