Skip to main content
Log in

A Line Feature Extraction Method for Finger-Knuckle-Print Verification

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Due to its mobility and reliability, the outer finger-knuckle-print (FKP) possesses several advantages over other biometric traits of the hand. However, most existing state-of-the-art methods utilize either local features alone or together with global features for FKP verification. These methods often demand high computational cost despite their high verification accuracy. In this paper, we propose a novel and fast matrix projection method for extracting line features from the finger-knuckle-print for person verification. Essentially, both the horizontal and the vertical knuckle lines are extracted by projecting the knuckle print image onto a shift-and-difference matrix. Such a matrix enables directional image shifting and subtraction within a single matrix multiplication. The resultant difference image then goes through a sigmoidal activation for contrast enhancement. Subsequently, the Fourier spectrum of the contrast enhanced image is adopted as the holistic features of the given finger-knuckle-print image. The entire process of extracting the proposed features is expressed in an analytic form to facilitate a fast vectorized implementation. For cognition performance enhancement, the two directional line features are subsequently fused at the score level by minimizing the error counts of the extreme learning machine kernel. Extensive experiments are performed to compare the proposed method with competing methods using three public finger-knuckle-print databases. Our experimental results show encouraging performance in terms of verification accuracy and computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Although the authors of [20] have named a fourth group, namely, the “other image processing approach,” no reference can be found to fall under such a group. Moreover, we found that the first three groups are enough to cover all the existing works in the literature. Based on these observations, the fourth group is excluded in our categorization.

References

  1. Wang Y, Hu J, Phillips D. A fingerprint orientation model based on 2D Fourier expansion (FOMFE) and its application to singular-point detection and fingerprint indexing. IEEE Trans Pattern Anal Mach Intell 2007; 29(4):573–585.

    Article  PubMed  Google Scholar 

  2. Wang Y, Hu J. Global ridge orientation modeling for partial fingerprint identification. IEEE Trans Pattern Anal Mach Intell 2011;33(1):72–87.

    Article  PubMed  Google Scholar 

  3. Hu H, Gu J. Multi-manifolds discriminative canonical correlation analysis for image set-based face recognition. Cogn Comput 2016;8(5):900–909.

    Article  Google Scholar 

  4. Mi JX, Li C, Li C, Liu T, Liu Y. A human visual experience-inspired similarity metric for face recognition under occlusion. Cogn Comput 2016;8(5):818–827.

    Article  Google Scholar 

  5. Jain AK, Ross A, Prabhakar S. An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 2004;14(1):4–20.

    Article  Google Scholar 

  6. Zhang D, Kong WK, You J, Wong M. Online palmprint identification. IEEE Trans Pattern Anal Mach Intell 2003;25(9):1041–1050.

    Article  Google Scholar 

  7. Kong AWK, Zhang D. Competitive coding scheme for palmprint verification. Proceedings IEEE international conference on pattern recognition. Cambridge, UK; 2004. p. 520–523.

  8. Zheng P. Gaussian shape descriptor for palmprint authentication. Cogn Comput 2010;2(4):303–311.

    Article  Google Scholar 

  9. Dai J, Feng J, Zhou J. Robust and efficient ridge-based palmprint matching. IEEE Trans Pattern Anal Mach Intell 2012;34(8):1618–1632.

    Article  PubMed  Google Scholar 

  10. Ross A, Jain A, Pankati S. A prototype hand geometry-based verification system. Proceedings 2nd conference on audio and video based biometric person authentication; 1999. p. 166–171.

  11. Fabregas J, Faundez-Zanuy M. Biometric recognition performing in a bioinspired system. Cogn Comput 2009;1 (3):257–267.

    Article  Google Scholar 

  12. El-Alfy ESM, Abdel-Aal RE. Abductive learning ensembles for hand shape identification. Cogn Comput 2014;6 (3):321–330.

    Article  Google Scholar 

  13. Faundez-Zanuy M, Mekyska J, Font-Aragonès X. A new hand image database simultaneously acquired in visible, near-infrared and thermal spectrums. Cogn Comput 2014;6(2):230–240.

    Article  Google Scholar 

  14. Kumar A, Zhang D. Personal recognition using hand shape and texture. IEEE Trans Image Process 2006; 15(8):2454–2461.

    Article  PubMed  Google Scholar 

  15. Xie SJ, Yoon S, Yang J, Lu Y, Park DS, Zhou B. Feature component-based extreme learning machines for finger vein recognition. Cogn Comput 2014;6(3):446–461.

    Article  Google Scholar 

  16. Kumar A, Prathyusha KV. Personal authentication using hand vein triangulation and knuckle shape. IEEE Trans Image Process 2009;18(9):2127–2136.

    Article  PubMed  Google Scholar 

  17. Li Q, Qiu Z, Sun D, Wu J. Personal identification using knuckleprint. Advances in biometric person authentication. Guangzhou, China; 2005. p. 680–689.

  18. Woodard DL, Flynn PJ. Finger surface as a biometric identifier. Comput Vis Image Underst 2005;100(3): 357–384.

    Article  Google Scholar 

  19. Zhang L, Zhang L, Zhang D, Zhu H. Online finger-knuckle-print verification for personal authentication. Pattern Recogn 2010;43(7):2560–2571.

    Article  Google Scholar 

  20. Jaswal G, Kaul A, Nath R. 2016. Knuckle print biometrics and fusion schemes–overview, challenges, and solutions. ACM Computing Surveys (CSUR), Vol. 49.

  21. Morales A, Travieso CM, Ferrer MA, Alonso JB. Improved finger-knuckle-print authentication based on orientation enhancement. IEEE Trans Image Process 2006;15(8):2454–2461.

    Article  Google Scholar 

  22. Zhang L, Zhang L, Zhang D. Finger-knuckle-print: a new biometric identifier. Proceedings IEEE international conference on image processing. Cairo, Egypt; 2009. p. 1981–1984.

  23. Zhang L, Zhang L, Zhang D, Zhu H. Ensemble of local and global information for finger-knuckle-print recognition. Pattern Recogn 2011;44(9):1990–1998.

    Article  Google Scholar 

  24. Nigam A, Tiwari K, Gupta P. Multiple texture information fusion for finger-knuckle-print authentication system. Neurocomputing 2016;188:190–205.

    Article  Google Scholar 

  25. Jaswal G, Nigam A, Nath R. Finger knuckle image based personal authentication using deepmatching. Proceedings International conference on identity, security and behavior analysis. Jeju, Korea; 2017. p. 1–8.

  26. Revaud J, Weinzaepfel P, Harchaoui Z, Schmid C. Deepmatching: Hierarchical deformable dense matching. Int J Comput Vis 2016;120(3):300–323.

    Article  Google Scholar 

  27. El-Tarhouni W, Shaikh MK, Boubchir L, Bouridane A. Multi- scale shift local binary pattern based-descriptor for finger-knuckle-print recognition. Proceedings IEEE conference on microelectronics. Doha, Qatar; 2014. p. 184–187.

  28. Aoyama S, Ito K, Aoki T. A finger-knuckle-print recognition algorithm using phase-based local block matching. Inf Sci 2014;268:53–64.

    Article  Google Scholar 

  29. Kumar A, Zhou Y. Human identification using knucklecodes. Proceedings IEEE Conference on Biometrics: Theory, Applications, and Systems. Washington, USA; 2009. p. 1–6.

  30. Zhang L, Zhang L, Zhang D, Guo Z. Phase congruency induced local features for finger-knuckle-print recognition. Pattern Recogn 2012;45(7):2522–2531.

    Article  Google Scholar 

  31. Gao G, Yang J, Qian J, Zhang L. Integration of multiple orientation and texture information for finger-knuckle-print verification. Neurocomputing 2014;135:180–191.

    Article  Google Scholar 

  32. Kumar A, Ravikanth C. Personal authentication using finger knuckle surface. IEEE Trans Inf Forensics Secur 2009;4(1):98–110.

    Article  CAS  Google Scholar 

  33. Zhang L, Zhang L, Zhang D. Finger-knuckle-print verification based on band-limited phase-only correlation. Proceedings International conference on computer analysis of images and patterns. Münster, Germany; 2009. p. 141–148.

  34. Cheng K, Kumar A. Contactless finger knuckle identification using smartphones. Proceedings IEEE Conference on Biometrics Special Interest Group. Darmstadt, Germany; 2012. p. 1–6.

  35. Hassan N, Akamatsu N. A new approach for contrast enhancement using sigmoid function. The Intern Arab J Inf Tech 2004 ;1(2):221–226.

    Google Scholar 

  36. Miyazawa K, Ito K, Aoki T, Kobayashi K, Nakajima H. An effective approach for iris recognition using phase-based image matching. IEEE Trans Pattern Anal Mach Intell 2008;30 (10):1741–1756.

    Article  PubMed  Google Scholar 

  37. Toh KA, Eng HL. Between classification-error approximation and weighted least-squares learning. IEEE Trans Pattern Anal Mach Intell 2008;30(4):658–669.

    Article  PubMed  Google Scholar 

  38. Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory and applications. Neurocomputing 2006; 70(1):489–501.

    Article  Google Scholar 

  39. Wang S, Deng C, Lin W, Huang GB, Zhao B. NMF-Based image quality assessment using extreme learning machine. IEEE Trans Cybern 2017;47(1):232–243.

    Article  PubMed  Google Scholar 

  40. Deng C, Wang S, Li Z, Huang GB, Lin W. 2017. Content-insensitive blind image blurriness assessment using weibull statistics and sparse extreme learning machine. IEEE Trans Syst Man Cybern Syst Hum.

  41. Davis PJ. Circulant matrices, 2nd. New York: American Mathematical Soc.; 2012.

    Google Scholar 

  42. Kim J, Oh K, Teoh ABJ, Toh KA. Finger-knuckle-print for identity verification based on difference images. Proceedings IEEE conference on industrial electronics and applications. Hefei, China; 2016. p. 1073–1077.

  43. Gonzalez RC. 2009. Digital image processing Pearson Education India.

  44. Abramowitz M, Stegun IA. Handbook of mathematical functions with formulas, graphs, and mathematical tables (9th Printing). New York: Courier Corporation; 1972.

    Google Scholar 

  45. Hong L, Wan Y, Jain A. Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans Pattern Anal Mach Intell 1998;20(8):777–789.

    Article  Google Scholar 

  46. Verhulst PF. Mathematical researches into the law of population growth increase. Nouveaux mémoires de l’ Académie Royale des Sciences et Belles-Lettres de Bruxelles 1845;18(1):1–42.

    Google Scholar 

  47. Rao KR, Yip PC. 2000. The transform and data compression handbook. CRC Press.

  48. Ross A, Jain A. Information fusion in biometrics. Pattern Recogn Lett 2003;24(13):2115–2125.

    Article  Google Scholar 

  49. Szeliski R. 2010. Computer vision: algorithms and applications. Springer Science & Business Media.

  50. Michelson AA. 1995. Studies in optics. Courier Corporation.

  51. Oh BS, Oh K, Toh KA, Teoh ABJ. A single layer feedforward fusion network for face verification. Proceedings 13th International Conference on Control Automation Robotics & Vision ; 2014. p. 944–948.

  52. Turk M, Pentland A. Eigenfaces for recognition. J Cogn Neurosci 1991;3(1):71–86.

    Article  PubMed  CAS  Google Scholar 

  53. Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 1997;19(7):711–720.

    Article  Google Scholar 

  54. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998;86(11):2278–2324.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the associate editor and the anonymous reviewers for their constructive comments to improve the paper.

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant number: NRF-2015R1D1A1A09061316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kar-Ann Toh.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was not required as no human or animals were involved.

Additional information

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Oh, K., Oh, BS. et al. A Line Feature Extraction Method for Finger-Knuckle-Print Verification. Cogn Comput 11, 50–70 (2019). https://doi.org/10.1007/s12559-018-9593-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-018-9593-6

Keywords

Navigation