Skip to main content

Advertisement

Log in

Evolutionary Design of Linguistic Fuzzy Regression Systems with Adaptive Defuzzification in Big Data Environments

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

This paper is positioned in the area of the use of cognitive computation techniques to design intelligent systems for big data scenarios, specifically the use of evolutionary algorithms to design data-driven linguistic fuzzy rule-based systems for regression and control. On the one hand, data-driven approaches have been extensively employed to create rule bases for fuzzy regression and control from examples. On the other, adaptive defuzzification is a well-known mechanism used to significantly improve the accuracy of fuzzy systems. When dealing with large-scale scenarios, the aforementioned methods must be redesigned to allow scalability. Our proposal is based on a distributed MapReduce schema, relying on two ideas: first, a simple adaptation of a classic data-driven method to quickly obtain a set of rules, and, second, a novel scalable strategy that uses evolutionary adaptive defuzzification to achieve better behavior through cooperation among rules. Some different regression problems were used to validate our methodology through an experimental study developed and included at the end of our paper. Therefore, the proposed approach allows scalability while tackling applications of linguistic fuzzy rule-based systems for regression with adaptive defuzzification in large-scale data scenarios. This paper thus examines the use of some relevant techniques for cognitive computing when working with a vast volume of examples, a common occurrence when dealing with the design of artificial intelligent systems that perform reasoning in a similar way as humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siddique N, Adeli H. Nature inspired computing: an overview and some future directions. Cogn Comput. 2015;7(6):706–14.

    Article  Google Scholar 

  2. Nobakhti A. On natural based optimization. Cogn Comput. 2010;2(2):97–119.

    Article  Google Scholar 

  3. Wang D, Shan H, Tian Y, Liu L. Emergent face orientation recognition with internal neurons of the developmental network. Prog Artif Intell. 2018;7(4):359–67.

    Article  Google Scholar 

  4. Dragoni M, Rospocher M. Applied cognitive computing: challenges, approaches, and real-world experiences. Prog Artif Intell. 2018;7(4):249–50.

    Article  Google Scholar 

  5. Fan M, Zhou Q, Abel A, Fang Zheng T, Grishman R. Probabilistic belief embedding for large-scale knowledge population. Cogn Comput. 2016;8(6):1087–102.

    Article  Google Scholar 

  6. Zhang HG, Wu L, Song Y, Su CW, Wang Q, Su F. An online sequential learning non-parametric value-at-risk model for high-dimensional time series. Cogn Comput. 2018;10(2):187–200.

    Article  Google Scholar 

  7. Abdullah A, Hussain A, Khan IH. Introduction: dealing with big data - lessons from cognitive computing. Cogn Comput. 2015;7(6):635–6.

    Article  Google Scholar 

  8. Zhang HY, Ji P, Wang JQ, Chen XH. A neutrosophic normal cloud and its application in decision-making. Cogn Comput. 2016;8(4):649–69.

    Article  CAS  Google Scholar 

  9. Tao Z, Han B, Chen H. On intuitionistic fuzzy copula aggregation operators in multiple- attribute decision making. Cogn Comput. 2018;10(4):610–24.

    Article  Google Scholar 

  10. Molina D, LaTorre A, Herrera F. An insight into bio-inspired and evolutionary algorithms for global optimization: review, analysis, and lessons learnt over a decade of competitions. Cogn Comput. 2018;10(4):517–44.

    Article  Google Scholar 

  11. Pino A, Shin K, Velázquez-Rodríguez C. Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data. Prog Artif Intell. 2018;7(4):399–410.

    Article  Google Scholar 

  12. Herrera F. Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol Intell. 2008;1(1):27–46.

    Article  Google Scholar 

  13. Fazzolari M, Alcalá R, Nojima Y, Ishibuchi H, Herrera F. A review of the application of multi-objective evolutionary systems: current status and further directions. IEEE Trans Fuzzy Syst. 2013;21(1):45–65.

    Article  Google Scholar 

  14. Fernández A, López V, del Jesus MJ, Herrera F. Revisiting evolutionary fuzzy systems: taxonomy, applications, new trends and challenges. Knowl Based Syst. 2015;80:109–21.

    Article  Google Scholar 

  15. Fernández A, Herrera F, Cordón O, del Jesus MJ, Marcelloni F. Evolutionary fuzzy systems for explainable artificial intelligence: why, when, what for, and where to? IEEE Comput Intell Mag. 2019;14(1):69–81.

    Article  Google Scholar 

  16. Elhag S, Fernández A, Alshomrani S, Herrera F. Evolutionary fuzzy systems: a case study for intrusion detection systems. In: Bansal J, Singh P, Pal N, editors. Evolutionary and swarm intelligence algorithms. Studies in Computational Intelligence, vol. 779. Cham: Springer; 2019. p. 169–90.

    Google Scholar 

  17. Ferdaus MM, Anavatti SG, Garratt MA, Pratama M. Development of C-means clustering based adaptive fuzzy controller for a flapping wing micro air vehicle. J Artif Intell Soft Com Res. 2019;9(2):99–109.

    Article  Google Scholar 

  18. Cózar J, dela Ossa L, Gámez JA. Learning compact zero-order TSK fuzzy rule-based systems for high-dimensional problems using an Apriori + local search approach. Inform Sci. 2018;433–434:1–16.

    Article  Google Scholar 

  19. Zikopoulos P, Eaton C, De Roos D, Deutsch T, Lapis G. Understanding big data: analytics for enterprise class Hadoop and streaming data. New York City: McGraw-Hill; 2011.

    Google Scholar 

  20. García-Pedrajas N, de Haro-García A. Scaling up data mining algorithms: review and taxonomy. Progr Artif Intell. 2012;1(1):71–87.

    Article  Google Scholar 

  21. Río S, López V, Benítez JM, Herrera F. A MapReduce approach to address big data classification problems based on the fusion of linguistic fuzzy rules. Int J Comp Intel Syst. 2015;8(3):422–37.

    Article  Google Scholar 

  22. Peralta D, Río S, Ramírez-Gallego S, Triguero I, Benítez JM, Herrera F. Evolutionary feature selection for big data classification: a MapReduce approach. Math Probl Eng. 2015:501–246139.

  23. Fernandez A, Carmona CJ, del Jesus MJ, Herrera F. A view on fuzzy systems for big data: progress and opportunities. Int J Comp Intel Syst. 2016;9(1):69–80.

    Article  Google Scholar 

  24. Ferranti A, Segatori A, Antonelli M, Ducange P. A distributed approach to multi-objective evolutionary generation of fuzzy rule-based classifiers from big data. Inf Sci. 2017;415(416):319–40.

    Article  Google Scholar 

  25. Ducange P, Marcelloni F, Segatori A. A MapReduce-based fuzzy associative classifier for big data. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 2015;1–8.

  26. López V, del Río S, Benítez JM, Herrera F. Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data. Fuzzy Sets Syst. 2015;258:5–38.

    Article  Google Scholar 

  27. Rodriguez-Fdez I, Mucientes M, Bugarin A. A genetic fuzzy system for large-scale regression. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 2016; 1421–1428.

  28. Rodriguez-Fdez I, Mucientes M, Bugarin A. SFRULER: scalable fuzzy rule learning through evolution for regression. Knowl Based Syst. 2016;110:255–66.

    Article  Google Scholar 

  29. Rodriguez-Mier P, Mucientes M, Bugarín A. Scalable modeling of thermal dynamics in buildings using fuzzy rules for regression. In Proceedings of the IEEE International Conference on Fuzzy System (FUZZ-IEEE). 2017; 1–6.

  30. Márquez AA, Márquez FA, Peregrín A. A scalable evolutionary linguistic fuzzy system with adaptive defuzzification in big data. In Proceedings of the IEEE International Conference on Fuzzy System (FUZZ-IEEE). 2017; 1–6.

  31. Alcalá R, Gacto MJ, Herrera F. A fast and scalable multiobjective genetic fuzzy system for linguistic fuzzy modelling in high dimensional regression problems. IEEE Trans Fuzzy Syst. 2011;19(4):666–81.

    Article  Google Scholar 

  32. Márquez AA, Márquez FA, Roldán AM, Peregrín A. An efficient adaptive fuzzy inference system for complex and high dimensional regression problems in linguistic fuzzy modelling. Knowl Based Syst. 2013;54:42–52.

    Article  Google Scholar 

  33. Antonelli M, Ducange P, Marcelloni F. Genetic training instance selection in multiobjective evolutionary fuzzy systems: a coevolutionary approach. IEEE Trans Fuzzy Syst. 2012;20(2):276–90.

    Article  Google Scholar 

  34. Antonelli M, Ducange P, Marcelloni F. An efficient multi-objective evolutionary fuzzy system for regression problems. Int J Approx Reason. 2013;54(9):1434–51.

    Article  Google Scholar 

  35. Gacto MJ, Galende M, Alcalá R, Herrera F. METSK-HDe: a multiobjective evolutionary algorithm to learn accurate tsk-fuzzy systems in high-dimensional and large scale regression problems. Inf Sci. 2014;276:63–79.

    Article  Google Scholar 

  36. Liu P, Li H. Interval-valued intuitionistic fuzzy power Bonferroni aggregation operators and their application to group decision making. Cogn Comput. 2017;9(4):494–512.

    Article  Google Scholar 

  37. Garg H, Arora R. Dual hesitant fuzzy soft aggregation operators and their application in decision-making. Cogn Comput. 2018;10(5):769–89.

    Article  Google Scholar 

  38. Alcala-Fdez J, Herrera F, Márquez FA, Peregrín A. Increasing fuzzy rules cooperation based on evolutionary adaptive inference systems. Int J Intell Syst. 2007;22(9):1035–64.

    Article  Google Scholar 

  39. Márquez FA, Peregrín A, Herrera F. Cooperative evolutionary learning of linguistic fuzzy rules and parametric aggregation connectors for Mamdani fuzzy system. IEEE Trans Fuzzy Syst. 2007;15(6):168–1178.

    Article  Google Scholar 

  40. Cordón O, Herrera F, Márquez FA, Peregrín A. A study on the evolutionary adaptive defuzzification methods in fuzzy modelling. Int J Hybrid Intell Syst. 2004;1(1):36–48.

    Article  Google Scholar 

  41. Wang L, Mendel J. Generating fuzzy rules by learning from examples. IEEE Trans Syst, Man, Cybern. 1992;22(6):1414–27.

    Article  Google Scholar 

  42. Ramirez-Gallego S, Fernández A, García S, Chen M, Herrera F. Big data: tutorial and guidelines on information and process fusion for analytics algorithms with MapReduce. Inf Fusion. 2018;42:51–61.

    Article  Google Scholar 

  43. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, et al. Apache spark: a unified engine for big data processing. Commun ACM. 2016;59(11):56–65.

    Article  Google Scholar 

  44. Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006;7:1–30.

    Google Scholar 

  45. García S, Herrera F. An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J Mach Learn Res. 2008;9:2579–96.

    Google Scholar 

  46. Cho JS, Park DJ. Novel fuzzy logic control based on weighting of partially inconsistent rules using neural network. J Intel Fuzzy Syst. 2000;8:99–100.

    Google Scholar 

  47. Laney D. 3D data management: controlling data volume, velocity and variety. META Group Research Note 6. 2001; 70.

  48. Fernández A, del Río S, López V, Bawakid A, del Jesus MJ, Benítez JM, et al. Big data with cloud computing: an insight on the computing environment, MapReduce, and programming frameworks. Wiley Interdiscip. Rev. Data Mining Knowl. Discov. 2014;4(5):380–409.

    Article  Google Scholar 

  49. White T. Hadoop: the definitive guide. Sebastopol: O’Reilly Media, Inc.; 2012.

    Google Scholar 

  50. Dean J, Ghemawat S. MapReduce: a flexible data processing tool. Commun ACM. 2010;53(1):72–7.

    Article  Google Scholar 

  51. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, et al. Pregel: a system for large-scale graph processing. In Proceedings of the ACM SIGMOD International Conference on Management of Data 2010;135–146.

  52. Padillo F, Luna JM, Ventura S. Exhaustive search algorithms to mine subgroups on big data using Apache Spark. Prog Artif Intell. 2017;6(2):145–58.

    Article  Google Scholar 

  53. Pulgar-Rubio F, Rivera-Rivas AJ, Pérez-Godoy MD, González P, Carmona CJ, del Jesus MJ. MEFASD-BD: multi-objective evolutionary algorithm for subgroup discovery in big data environments - a MapReduce solution. Knowl Based Syst. 2017;117:70–8.

    Article  Google Scholar 

  54. Arnaiz-González A, González-Rogel A, Díez-Pastor JF, López-Nozal C. MR-DIS: democratic instance selection for big data by MapReduce. Prog Artif Intell. 2017;6(3):211–9.

    Article  Google Scholar 

  55. Luna-Romera JM, García-Gutiérrez J, Martínez-Ballesteros M, Riquelme JC. An approach to validity indices for clustering techniques in big data. Prog Artif Intell. 2018;7(2):81–94.

    Article  Google Scholar 

  56. Eshelman LJ. The CHC adaptive search algorithm: how to safe search when engaging in nontraditional genetic recombination. In G.J.E. Rawlings (Ed.), Foundations of genetic algorithms. 1991;1:265–283.

  57. Herrera F, Lozano M, Sánchez A. A taxonomy for the crossover operator for real-coded genetic algorithms: an experimental study. Int J Intell Syst. 2003;18:309–38.

    Article  Google Scholar 

  58. Alcala-Fdez J, Sánchez L, García S, del Jesus M, Ventura S, Garrell J, et al. Keel: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 2009;13(3):307–18.

    Article  Google Scholar 

  59. Sheskin D. Handbook of parametric and nonparametric statistical procedures. Boca Raton: Chapman & Hall/CRC; 2006.

    Google Scholar 

Download references

Funding

This work was supported by grant from the Spanish Ministry of Science under project TIN2017-89517-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Peregrín.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article contains no studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, S., Márquez, A.A., Márquez, F.A. et al. Evolutionary Design of Linguistic Fuzzy Regression Systems with Adaptive Defuzzification in Big Data Environments. Cogn Comput 11, 388–399 (2019). https://doi.org/10.1007/s12559-019-09632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-019-09632-4

Keywords

Navigation