Skip to main content
Log in

Shaping Emotions in Negotiation: a Nash Bargaining Solution

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Modeling emotions in negotiations is an open challenge that attracted an increasing amount of attention from researchers. Bargainers look for achieving an agreement with the opposing parties and, at the same time, try to reach their own goals. This process consists of both bargaining and (game theory) problem solving. Game theory models seek to enlighten the rational negotiations between players, but these models lack the evidence of how emotional motives may influence individuals’ behavior. This paper suggests a model for shaping emotions in negotiation using Nash’s bargaining approach. We focus on the case where negotiation between players has motives of cooperating, considering eight emotions: anger, fear, joy, sadness, surprise, disgust, guilt, and disappointment. For representing the solution of the problem, we employ a homogeneous Markov game. The simplicity of the model relies on the fact that the emotions are represented by the states of the Markov chain. The relationship between the emotions is represented by a transition matrix that determines the probability of changing between the emotions (states) at any time. Because any emotion can be reached at any time with certain probability, the bargaining Markov game is ergodic. We represent naturally the emotional process of bargaining using a proximal method, which involves the bargaining Nash product for computing the equilibrium of the game. We show the convergence of the method to the emotional equilibrium point. The solution of the Nash bargaining game consists of cooperative emotional strategies, which are transformed in emotional probability distributions. Such emotional probability distributions are measured using an asymmetric distance function that determines the “emotional distance” between players in negotiations. Emotions are measured using an asymmetric distance function because they are different between players. We present a new approach for shaping emotions in negotiations employing Nash’s bargaining model. An application example shows the influence of expressing emotions in the relationship process, and those emotions are strategically selected to gain a benefit in negotiations. We show that the magnitude and direction of emotional distance matter and that feelings have an asymmetric effect on the negotiation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Attouch H, Soubeyran A. Local search proximal algorithms as decision dynamics with costs to move. Set-Valued Anal 2011;19:157–77.

    MathSciNet  MATH  Google Scholar 

  2. Ay N, Jost J, Van Le H, Schwachhofer L. 2017. Information geometry. Springer International Publishing.

  3. Bosse T, Duell R, Memon ZA, TreurEmail J, van der Wal CN. Agent-based modeling of emotion contagion in groups. Cogn Comput 2015;7(1):111–36.

    Google Scholar 

  4. Brooks AW. 2015. Emotion and the art of negotiation. Harvard Business Review, 56–64.

  5. Brown A, Curhan J. The polarizing effect of arousal on negotiation. Psychol Sci 2013;24(10):1928–35.

    Google Scholar 

  6. Cambria E. Affective computing and sentiment analysis. IEEE Intell Syst 2016;31(2):102–7.

    Google Scholar 

  7. Carnevale PJ. Positive affect and decision frame in negotiation. Group Decis Negot 2008;17(1):51–63.

    Google Scholar 

  8. Clempner JB, Poznyak AS. Simple computing of the customer lifetime value: a fixed local-optimal policy approach. J Syst Sci Syst Eng 2014;23(4):439–59.

    Google Scholar 

  9. Clempner JB, Poznyak AS. A tikhonov regularization parameter approach for solving lagrange constrained optimization problems. Eng Optim 2018;50(11):1996–2012.

    MathSciNet  Google Scholar 

  10. Clempner JB, Poznyak AS. A tikhonov regularized penalty function approach for solving polylinear programming problems. J Comput Appl Math 2018;328:267–86.

    MathSciNet  MATH  Google Scholar 

  11. Clore GL, Gasper K, Garvin E. 2001. Handbook of affect and social cognition, chap. Affect as information, 21–144.

  12. De Dreu C, Greer L, Handgraaf M, Shalvi S, Van Kleef G, Baas M, Ten Velden F, Van Dijk E, Feith S. The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science 2010;328(5984):1408–11.

    Google Scholar 

  13. Dimotakis N, Conlon D, Ilies R. The mind and heart (literally) of the negotiator: personality and contextual determinants of experiential reactions and economic outcomes in negotiation. J Appl Psychol 2012;97(1): 183–93.

    Google Scholar 

  14. Druckman D, Karis D, Donchin E. Aspiration levels in bargaining and economic decision making, chap. Information-processing in bargaining: reactions to an opponent’s shift in concession strategy. New York: Springer; 1983.

    Google Scholar 

  15. Filipowicz A, Barsade S, Melwani S. Understanding emotional transitions: the interpersonal consequences of changing emotions in negotiations. J Pers Soc Psychol 2011;101(3):541–56.

    Google Scholar 

  16. Harinck F, Van Kleef G. Be hard on the interests and soft on the values: conflict issue moderates the effects of anger in negotiations. Br J Soc Psychol 2012;51(4):741–52.

    Google Scholar 

  17. Hegtvedt KA, Killian C. Fairness and emotions: reactions to the process and outcomes of negotiations. Soc Forces 1999;78(1):269–302.

    Google Scholar 

  18. Hyde K, Lerch J, Norton A, Forgeard M, Winner E, Evans A, Schlaug G. Musical training shapes structural brain development. J Neurosci 2009;29(10):3019–25.

    Google Scholar 

  19. van Kleef G, De Dreu C, Manstead A. The interpersonal effects of anger and happiness in negotiations. J Pers Soc Psychol 2004;86(1):57–76.

    Google Scholar 

  20. Lelieveld G, Van Dijk E, Van Beest I, Steinel W, Van Kleef G. Disappointed in you, angry about your offer: distinct negative emotions induce concessions via different mechanisms. J Exp Soc Psychol 2011;47 (3):635–41.

    Google Scholar 

  21. Lelieveld G, Van Dijk E, Van Beest I, Van Kleef G. Does communicating disappointment in negotiations help or hurt? solving an apparent inconsistency in the social-functional approach to emotions. J Pers Soc Psychol 2013;105(4):605–20.

    Google Scholar 

  22. Lelieveld GJ, Van Dijk E, Van Beest I, Van Kleef G. Why anger and disappointment affect other’s bargaining behavior differently: the moderating role of power and the mediating role of reciprocal and complementary emotions. Pers Soc Psychol Bull 2012;38(9):1209–21.

    Google Scholar 

  23. Mehta Y, Majumder N, Gelbukh A, Cambria E. 2019. Recent trends in deep learning based personality detection. Artif Intell Rev. To be published. https://doi.org/10.1007/s10462-019-09770-z.

  24. Menestre ML, Van Wassenhove LN. Ethics in operations research and management sciences: a never-ending effort to combine rigor and passion. Omega 2009;37(6):1039–43.

    Google Scholar 

  25. Merlo A, Francois OM. Bargaining over residential real estate: evidence from england. J Urban Econ 2004; 56:192–216.

    Google Scholar 

  26. Nash JF. The bargaining problem. Econometrica 1950;18(2):155–62.

    MathSciNet  MATH  Google Scholar 

  27. Nelissen RA, Lelieveld M, van Dijk E, Zeelenberg M. Fear and guilt in proposers: using emotions to explain offers in ultimatum bargaining. Eur J Soc Psychol 2011;41(1):78–85.

    Google Scholar 

  28. Olekalns M, Druckman D. With feeling: how emotions shape negotiation. Negot J 2014;30(4):455–78.

    Google Scholar 

  29. Picasso A, Merello S, Ma Y, Oneto L, Cambria E. Technical analysis and sentiment embeddings for market trend prediction. Expert Syst Appl 2019;135:60–70.

    Google Scholar 

  30. Posner J, Russell J, Gerber A, Gorman D, Colibazzi T, Yu S, Wang Z, Kangarlu A, Zhu H, Peterson B. The neurophysiological bases of emotion: an fmri study of the affective circumplex using emotion-denoting words. Hum Brain Mapp 2009;30(3):883–95.

    Google Scholar 

  31. Poznyak AS, Najim K, Gomez-Ramirez E. Self-learning control of finite Markov chains. New York: Marcel Dekker, Inc.; 2000.

    MATH  Google Scholar 

  32. Reisenzein R, Hudlicka E, Dastani M, Gratch J, Hindriks K, Lorini E, Meyer JJ. Computational modeling of emotion: toward improving the inter- and intradisciplinary exchange. IEEE Trans Affect Comput 2013;4(3):246–66.

    Google Scholar 

  33. Salgado M, Clempner JB. Measuring the emotional distance using game theory via reinforcement learning: a kullback-leibler divergence approach. Expert Syst Appl 2018;97:266–75.

    Google Scholar 

  34. Schneider K, Hempel R, Lynch T. That “poker face” just might lose you the game! the impact of expressive suppression and mimicry on sensitivity to facial expressions of emotion. Emotion 2013;13(5):852–66.

    Google Scholar 

  35. Sinaceur MG, Van Kleef A, Neale M, Adam H, Haag C. Hot or cold: is communicating anger or threats more effective in negotiation? J Appl Psychol 2011;96(5):1018–32.

    Google Scholar 

  36. Steinel WG, Van Kleef A, Harinck F. Are you talking to me?! Separating the people from the problem when expressing emotions in negotiation. J Exp Soc Psychol 2008;44(3):362–9.

    Google Scholar 

  37. Tamir M, Ford BQ. When feeling bad is expected to be good: emotion regulation and outcome expectancies in social conflicts. Emotion 2012;12(4):807–816.

    Google Scholar 

  38. Trejo KK, Clempner JB. New perspectives and applications of modern control theory, chap. Continuous time bargaining model in controllable Markov games: Nash vs. Kalai-Smorodinsky. New York: Springer International Publishing; 2018, pp. 335–69.

    MATH  Google Scholar 

  39. Trejo KK, Clempner JB, Poznyak AS. Nash bargaining equilibria for controllable markov chains games. In: The 20th World congress of the international federation of automatic control (IFAC). Toulouse; 2017. pp. 12,772–12,777.

  40. Trejo KK, Clempner JB, Poznyak AS. 2018. Computing the bargaining approach for equalizing the ratios of maximal gains in continuous-time Markov chains games. Comput Econ. To be published.

  41. Trejo KK, Clempner JB, Poznyak AS. Proximal constrained optimization approach with time penalization. Eng Optim 2019;51(7):1207–28.

    MathSciNet  Google Scholar 

  42. Tsay C, Bazerman MMHB. A decision-making perspective to negotiation: a review of the past and a look into the future. Negot J 2009;25(4):467–80.

    Google Scholar 

  43. Wicker B, Keysers C, Plailly J, Royet J, Gallese V, Rizzolatti G. Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron 2003;40(3):655–64.

    Google Scholar 

  44. Wietzker A, Buysse A, Loeys T, Brondeel R. Easing the conscience: feeling guilty makes people cooperate in divorce negotiations. J Soc Pers Relat 2012;29(3):324–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio B. Clempner.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

Proof

Considering that \(\left (\nabla h\left (x\right ) ,\left (y-x\right ) \right ) \leq h\left (y\right ) -h\left (x\right ) \) and \(\left (\nabla h\left (x\right ) ,\left (x-y\right ) \right ) \geq h\left (x\right ) -h\left (y\right ) \) valid for any convex function \(h\left (x\right ) \) and any x and y, then for any admissible points x, μ,λ, and \(x_{n}^{\ast }=x^{\ast }\left (\theta _{n},\delta _{n}\right ) \), \(\mu _{n}^{\ast }=\mu ^{\ast }\left (\theta _{n},\delta _{n}\right ) ,\) and \(\lambda _{n}^{\ast }=\lambda ^{\ast }\left (\theta _{n},\delta _{n}\right ), \) we have

$$ \begin{array}{@{}rcl@{}} &&\left( x-x_{n}^{\ast },\frac{\partial }{\partial x} \mathbb{L} _{\theta ,\delta }\left( x,\mu,\lambda|x_{n}\right) \right) \\ &&-\left( \mu-\mu_{n}^{\ast },\frac{\partial }{\partial \mu} \mathbb{L}_{\theta ,\delta }\left( x,\mu,\lambda|x_{n}\right) \right) \\ &&-\left( \lambda-\lambda_{n}^{\ast },\frac{\partial }{\partial \lambda} \mathbb{L}_{\theta ,\delta }\left( x,\mu,\lambda|x_{n}\right) \right)\\ &=&\theta_{n} \left( x-x_{n}^{\ast }\right)^{\intercal }\frac{\partial }{\partial x}(\phi(x) -\phi(x_{n}))\\ &&+\left( x-x_{n}^{\ast }\right)^{\intercal }\left[ A^{\intercal }\mu +B^{\intercal }\lambda+\delta_{n} \left( x-x_{n}\right) \right] \\ &&+\left( \mu-\mu_{n}^{\ast }\right)^{\intercal }\left( \delta_{n}\mu-Ax+a\right) \\ &&+\left( \lambda-\lambda_{n}^{\ast }\right)^{\intercal }\left( \alpha_{n}\lambda-Bx+b\right) \\ &=&\theta_{n} (\phi(x)-\phi(x_{n}))+ \mu^{\intercal }\left( Ax-a\right) \\ &&+\lambda^{\intercal }\left( Bx-b\right) + \frac{\delta_{n}}{2} \left\Vert x\text{-}x_{n}\right\Vert^{2}\text{-} \frac{\alpha_{n}}{2} \left( \left\Vert \mu\right\Vert^{2}\text{+}\left\Vert \lambda \right\Vert^{2}\right) \\ &&-\theta_{n} (\phi(x_{n}^{\ast })-\phi(x_{n}))-\left( \mu_{n}^{\ast }\right)^{\intercal }\left( Ax_{n}^{\ast }-a\right) \\ &&-\left( \lambda_{n}^{\ast }\right)^{\intercal }\left( Bx_{n}^{\ast }-b\right) - \frac{\delta_{n}}{2} \left\Vert x_{n}^{\ast }-x_{n}\right\Vert^{2}\\ &&+\frac{\alpha_{n}}{2}\left( \left\Vert \mu_{n}^{\ast }\right\Vert^{2}+ \left\Vert \lambda_{n}^{\ast }\right\Vert^{2}\right) \\ &=&\mathbb{L}_{\theta_{n},\delta_{n}}\left( x,\mu_{n},\lambda_{in}|x_{n}\right) - \mathbb{L}_{\theta ,\delta }\left( x_{n}^{\ast },\mu_{n},\lambda_{n}|x_{n}\right) \\&&+ \frac{\delta_{n}}{2} \left\Vert x-x_{n}^{\ast }\right\Vert^{2}\text{+} \frac{\alpha_{n}}{2}\left( \left\Vert \mu-\mu_{n}^{\ast }\right\Vert^{2}+\left\Vert \lambda-\lambda_{n}^{\ast }\right\Vert^{2}\right) \end{array} $$

which by the saddle-point condition implies

$$ \begin{array}{@{}rcl@{}} &&\theta_{n} \left( x-x_{n}^{\ast }\right)^{\intercal }\frac{ \partial }{\partial x}(\phi(x)\text{-}\phi(x_{n}^{\ast }))+\left( x- x_{n}^{\ast }\right)^{\intercal } \cdot \\ &&\left[ A^{\intercal }\mu+ B^{\intercal }\lambda\text{+} \delta_{n} \left( x-x_{n}\right) \right] + \left( \mu-\mu_{n}^{\ast }\right)^{\intercal } \cdot \\ &&\left( \alpha_{n}-Ax+a\right) +\left( \lambda -\lambda_{n}^{\ast }\right)^{\intercal } \left( \alpha_{n}- Bx+b\right) \\ &\geq&\frac{\delta_{n}}{2} \left\Vert x-x^{\ast }\right\Vert^{2}+ \frac{\alpha_{n}}{2}\left( \left\Vert \mu-\mu_{n}^{\ast },\right\Vert^{2}+\left\Vert \lambda-\lambda_{n}^{\ast }\right\Vert^{2}\right) \end{array} $$
(21)

Choosing in Eq. 21x := xX (x is one of admissible solutions such that Ax = a and Bxb) and μ = μ, λ = λ and considering the complementary slackness conditions we have that \( \left (\lambda ^{\ast }\right )_{i}\left (Bx^{\ast }-b\right )_{i}=\left (\lambda _{n}^{\ast }\right )_{i}\left (Bx_{n}^{\ast }-b\right )_{i}=0 \) obtaining

$$ \begin{array}{@{}rcl@{}} &&\theta_{n} \left( x^{\ast }-x_{n}^{\ast }\right)^{\intercal }\frac{ \partial }{\partial x}\left( \phi \left( x^{\ast }\right) -\phi(x_{n}^{\ast })\right) \\ &&+\left( x^{\ast }-x_{n}^{\ast }\right)^{\intercal }\left[ A^{\intercal }\mu^{\ast }+B^{\intercal }\lambda^{\ast }+\delta_{n} \left( x^{\ast }-x_{n}^{\ast }\right)\right] \\ &&+\left( \mu^{\ast }- \mu_{n}^{\ast }\right)^{\intercal } \left( \alpha_{n}\mu^{\ast }-Ax^{\ast }+a\right) + \left( \lambda^{\ast }-\lambda_{n}^{\ast }\right)^{\intercal } \\ &&\cdot\left( \alpha_{n}\lambda^{\ast }-Bx^{\ast }+ b\right)= \theta_{n} \left( x^{\ast }\text{-}x_{n}^{\ast }\right)^{\intercal }\frac{\partial }{\partial x}\left( \phi\left( x^{\ast }\right) \text{-}\phi(x_{n}^{\ast })\right) \\ &&+ \left( \mu^{\ast }\right)^{\intercal } \left( \left[ Ax^{\ast }\text{-}a\right] \text{-} \left[ Ax_{n}^{\ast }\text{-}a\right] \right) \text{+} \left( \lambda^{\ast }\right)^{\intercal } \left( \left[ Bx^{\ast }-b \right] \right. \\&& \left. -\left[ Bx_{n}^{\ast }-b\right] \right) + \delta_{n} \left( x^{\ast }-x_{n}^{\ast }\right)^{\intercal }\left( x^{\ast }-x_{n}^{\ast }\right) \\ &&+\alpha_{n}\left( \mu^{\ast }\text{-}\mu_{n}^{\ast }\right)^{\intercal }\mu^{\ast }+ \left( \lambda^{\ast }\text{-}\lambda_{n}^{\ast }\right)^{\intercal }\alpha_{n}\lambda^{\ast }\text{+} \left( \lambda_{n}^{\ast }\right)^{\intercal }\left( Bx^{\ast }\text{-}b\right) \\ &\geq&\frac{\delta_{n}}{2} \left\Vert x^{\ast }\text{-}x_{n}^{\ast }\right\Vert^{2}\text{+} \frac{\alpha_{n}}{2}\left( \left\Vert \mu^{\ast }-\mu_{n}^{\ast }\right\Vert^{2}+\left\Vert \lambda^{\ast }-\lambda_{n}^{\ast }\right\Vert^{2}\right) \geq 0 \end{array} $$

Simplifying the last inequality, we have

$$ \begin{array}{@{}rcl@{}} &&\theta_{n} \left( x^{\ast }-x_{n}^{\ast }\right)^{\intercal }\frac{ \partial }{\partial x}\left( f\left( x^{\ast }\right) - \phi(x_{n}^{\ast })\right) +\delta_{n} \left( x^{\ast }-x_{n}^{\ast }\right)^{\intercal }\left( x^{\ast }\right)\\ &&+\alpha_{n}\left( \mu^{\ast }-\mu_{n}^{\ast }\right)^{\intercal }\mu^{\ast }+ \left( \lambda^{\ast }-\lambda_{n}^{\ast }\right)^{\intercal }\alpha_{n}\lambda^{\ast }\geq 0 \end{array} $$

Dividing both sides of this inequality by δn taking αn = δn, and \(\frac {\theta _{n}}{\delta _{n}} \underset {n\rightarrow \infty }{\rightarrow }0\), we get

$$ \begin{array}{@{}rcl@{}} 0&\leq& \underset{n\rightarrow \infty }{\limsup }\left[ \left( x^{\ast }-x_{n}^{\ast }\right)^{\intercal }x^{\ast }+\left( \mu^{\ast }-\mu_{n}^{\ast }\right)^{\intercal }\mu^{\ast }\right.\\ &&\left.+\left( \lambda^{\ast }-\lambda_{n}^{\ast }\right)^{\intercal }\lambda^{\ast } \right] \end{array} $$

This means that there necessarily exists subsequences δk and 𝜃k\(\left (k\rightarrow \infty \right ) \) on which there exist the limits

$$ \begin{array}{@{}rcl@{}} x_{k}^{\ast }&=&x^{\ast }\left( \theta_{k},\delta_{k}\right) \rightarrow \tilde{x}^{\ast },\text{ }\mu_{k}^{\ast }=\mu^{\ast }\left( \theta_{k},\delta_{k}\right) \rightarrow \tilde{\mu}^{\ast } \\ \lambda_{k}^{\ast }&=&\lambda^{\ast }\left( \theta_{k},\delta_{k}\right) \rightarrow \tilde{\lambda}^{\ast }\text{ { as} } k\rightarrow \infty \end{array} $$

Suppose that there exist two limit points for two different convergent subsequences, i.e., there exist the limits

$$ \begin{array}{@{}rcl@{}} x_{k^{\prime }}^{\ast }&=&x^{\ast }\left( \theta_{k^{\prime }},\delta_{k^{\prime }}\right) \rightarrow \bar{x}^{\ast },\text{ }\mu_{k^{\prime }}^{\ast }=\mu^{\ast }\left( \theta_{k^{\prime }},\delta_{k^{\prime }}\right) \rightarrow \bar{\mu}^{\ast } \\ \lambda_{k^{\prime }}^{\ast }&=&\lambda^{\ast }\left( \theta_{k^{\prime }},\delta_{k^{\prime }}\right) \rightarrow \bar{\lambda}^{\ast }\text{ { as} }k\rightarrow \infty \end{array} $$

Then, on these subsequences, one has

$$ \begin{array}{@{}rcl@{}} 0&\leq& \left( x^{\ast }-\tilde{x}^{\ast }\right)^{\intercal }x^{\ast }+\left( \mu^{\ast }-\tilde{\mu}^{\ast }\right)^{\intercal }\mu^{\ast }+\left( \lambda^{\ast }-\tilde{\lambda}^{\ast }\right)^{\intercal }\lambda^{\ast } \\ 0&\leq& \left( x^{\ast }-\bar{x}^{\ast }\right)^{\intercal }x^{\ast }+\left( \mu^{\ast }-\bar{\mu}^{\ast }\right)^{\intercal }\mu^{\ast }+\left( \lambda^{\ast }-\bar{\lambda}^{\ast }\right)^{\intercal }\lambda^{\ast } \end{array} $$

From these inequalities, it follows that points \(\left (\tilde {x}^{\ast }, \tilde {\mu }^{\ast },\tilde {\lambda }^{\ast }\right ) \) and \(\left (\bar {x}^{\ast },\bar {\mu }^{\ast },\bar {\lambda }^{\ast }\right ) \) correspond to the minimum point of the function

$$ s\left( x^{\ast },\mu^{\ast },\lambda^{\ast }\right) :=\frac{1}{2} \left( \left\Vert x^{\ast }\right\Vert^{2}+\left\Vert \mu^{\ast }\right\Vert^{2}+\left\Vert \lambda^{\ast }\right\Vert^{2}\right) $$

defined on X⊗Ξ for all possible saddle-points of the Lagrange function. But the function \(s\left (x^{\ast },\mu ^{\ast },\lambda ^{\ast }\right ) \) is strictly convex, and, hence, its minimum is unique that gives \(\tilde {x}^{\ast }\) = \(\bar {x}^{\ast },\)\(\tilde {\mu }^{\ast }=\bar {\mu }^{\ast },\)\(\tilde {\lambda }^{\ast }=\bar {\lambda }^{\ast }\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clempner, J.B. Shaping Emotions in Negotiation: a Nash Bargaining Solution. Cogn Comput 12, 720–735 (2020). https://doi.org/10.1007/s12559-020-09713-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-020-09713-9

Keywords

Navigation