Skip to main content
Log in

Multi-view Clustering with Latent Low-rank Proxy Graph Learning

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

With advances in information acquisition technologies, multi-view data are increasing dramatically in a variety of real-world applications, whereas such data is usually corrupted by noises and outliers. Many existing multi-view graph clustering (MVGC) methods usually learn a consensus affinity graph using a late-fusion scheme in semantic space, which compound the challenge of leveraging the underlying relationships among corrupted multi-view data. In this paper, we propose a novel clustering method for handing corrupted multi-view data, hereafter referred to as Latent Low-Rank Proxy Graph Learning (LLPGL). Specifically, by projecting the multi-view data into a low-dimension proxy feature space, LLPGL can learn a low-dimension yet low-rank latent proxy from corrupted view data. Meanwhile, by employing the adaptive neighbor graph learning over the clean proxy, a high-quality affinity graph can be learned for clustering purpose. Then, an effective optimization algorithm is proposed to solve the model of LLPGL. Experimental results on five widely used real-world benchmarks validate the effectiveness of the proposed method.Consequently, the proposed method can be used to cluster the corrupted multi-view data for real-life applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The late-fusion scheme fuses multi-view information in semantic space, while the early-fusion scheme fuses multi-view information in feature space.

  2. https://canyilu.github.io/publications/2015-report-simplex.pdf

References

  1. Yang ZX, Tang L, Zhang K, Wong PK. Multi-view cnn feature aggregation with elm auto-encoder for 3d shape recognition. Cogn Comput. 2018;10(6):908–21.

    Article  Google Scholar 

  2. Li Y, Yang M, Zhang Z. A survey of multi-view representation learning. IEEE Trans Knowl Data Eng. 2018;31(10):1863–83.

    Article  Google Scholar 

  3. Contreras D, Salamó M. A cognitively inspired clustering approach for critique-based recommenders. Cogn Comput. 2020;12(2):428–41.

    Article  Google Scholar 

  4. Nie F, Wang X, Jordan MI, Huang H. The constrained laplacian rank algorithm for graph-based clustering. In Proceedings of the AAAI Conf Artif Intell. 2016:1969–1976.

  5. Nie F, Wang X, Huang H. Clustering and projected clustering with adaptive neighbors. In Proceedings of the ACM SIGKDD Int Conf Knowl Disc Data Mining. 2014:977–986.

  6. Wang H, Yang Y, Liu B, Fujita H. A study of graph-based system for multi-view clustering. Knowl-Based Syst. 2019;163:1009–19.

    Article  Google Scholar 

  7. Kang Z, Pan H, Hoi SC, Xu Z. Robust graph learning from noisy data. IEEE transactions on cybernetics. 2019;50(5):1833–43.

    Article  Google Scholar 

  8. Jin Z, Zhao X, Liu Y. Heterogeneous graph network embedding for sentiment analysis on social media. Cogn Comp, 2021:1–15.

  9. Huang S, Tsang I, Xu Z, LV JC. Measuring diversity in graph learning: a unified framework for structured multi-view clustering. IEEE Trans Knowl Data Eng. 2021.

  10. Huang S, Xu Z, Tsang IW, Kang Z. Auto-weighted multi-view co-clustering with bipartite graphs. Inf Sci. 2020;512:18–30.

    Article  MathSciNet  Google Scholar 

  11. Huang S, Kang Z, Tsang IW, Xu Z. Auto-weighted multi-view clustering via kernelized graph learning. Pattern Recogn. 2019;88:174–84.

    Article  Google Scholar 

  12. Wang S, Siskind JM. Image segmentation with ratio cut. IEEE Trans Pattern Anal Mach Intell. 2003;25(6):675–90.

    Article  Google Scholar 

  13. Ren Z, Mukherjee M, Lloret J, Venu P. Multiple kernel driven clustering with locally consistent and selfish graph in industrial iot. IEEE Trans Industr Inf. 2020;17(4):2956–63.

    Article  Google Scholar 

  14. Li Y, Nie F, Huang H, Huang J. Large-scale multi-view spectral clustering via bipartite graph. In Proceedings of the AAAI Conf Artif Intell. 2015:2750–2756.

  15. Ren Z, Yang SX, Sun Q, Wang T. Consensus affinity graph learning for multiple kernel clustering. IEEE Trans Cybernet (2020).

  16. Pei X, Wu T, Chen C. Automated graph regularized projective nonnegative matrix factorization for document clustering. IEEE Trans Cybernet. 2014;44(10):1821–31.

    Article  Google Scholar 

  17. Wang H, Yang Y, Liu B. Gmc: Graph-based multi-view clustering. IEEE Trans Knowl Data Eng. 2019;32(6):1116–29.

    Article  Google Scholar 

  18. Li X, Chen M, Wang Q. Adaptive consistency propagation method for graph clustering. IEEE Trans Knowl Data Eng. 2019;32(4):797–802.

    Article  Google Scholar 

  19. Xie D, Gao Q, Wang Q, Zhang X, Gao X. Adaptive latent similarity learning for multi-view clustering. Neural Netw. 2020;121:409–18.

    Article  Google Scholar 

  20. Zhao Q, Zong, L, Zhang X, Liu X, Yu H. Multi-view clustering via clusterwise weights learning. Knowl-Based Sys. 2020:105459.

  21. Weng W, Zhou W, Chen J, Peng H, Cai H. Enhancing multi-view clustering through common subspace integration by considering both global similarities and local structures. Neurocomputing. 2020;378:375–86.

    Article  Google Scholar 

  22. Ren Z, Lei H, Sun Q, Yang C. Simultaneous learning coefficient matrix and affinity graph for multiple kernel clustering. Inf Sci. 2021;547:289–306.

    Article  MathSciNet  Google Scholar 

  23. Cao X, Zhang C, Fu H, Liu S, Zhang H. Diversity-induced multi-view subspace clustering. In Proceedings of the IEEE Conf Comp Vis Pattern Recogn. 2015:586–594.

  24. Ren Z, Sun, Q. Simultaneous global and local graph structure preserving for multiple kernel clustering. IEEE Trans Neural Netw Learn Sys. 2020.

  25. Tang C, Zhu X, Liu X, Li M, Wang P, Zhang C, Wang L. Learning a joint affinity graph for multiview subspace clustering. IEEE Trans Multimedia. 2018;21(7):1724–36.

    Article  Google Scholar 

  26. Chen Y, Wang S, Zheng F, Cen Y. Graph-regularized least squares regression for multi-view subspace clustering. Knowl-Based Sys 2020:105482.

  27. Li R, Zhang C, Hu Q, Zhu P, Wang Z. Flexible multi-view representation learning for subspace clustering. In Proceedings of the 28th Int Joint Conf Artif Intell. 2019:2916–2922.

  28. Huang S, Kang Z, Xu Z. Self-weighted multi-view clustering with soft capped norm. Knowl-Based Syst. 2018;158:1–8.

    Article  Google Scholar 

  29. Huang S, Ren Y, Xu Z. Robust multi-view data clustering with multi-view capped-norm k-means. Neurocomputing. 2018;311:197–208.

    Article  Google Scholar 

  30. Zhou S, Zhu E, Liu X, Zheng T, Liu Q, Xia J, Yin J. Subspace segmentation-based robust multiple kernel clustering. Inf Fusion. 2020;53:145–54.

    Article  Google Scholar 

  31. Yin M, Gao J, Lin Z, Shi Q, Guo Y. Dual graph regularized latent low-rank representation for subspace clustering. IEEE Trans Image Process. 2015;24(12):4918–33.

    Article  MathSciNet  Google Scholar 

  32. Li H, Ren Z, Mukherjee M, Huang Y, Sun Q, Li X, Chen L. Robust energy preserving embedding for multi-view subspace clustering. Knowl-Based Syst. 2020;210:106489.

    Article  Google Scholar 

  33. Zhan K, Zhang C, Guan J, Wang J. Graph learning for multiview clustering. IEEE Trans Cybernet. 2017;48(10):2887–95.

    Article  Google Scholar 

  34. Chen C, Qian H, Chen W, Zheng Z, Zhu H. Auto-weighted multi-view constrained spectral clustering. Neurocomputing. 2019;366:1–11.

    Article  Google Scholar 

  35. Nie F, Cai G, Li X. Multi-view clustering and semi-supervised classification with adaptive neighbours. In Proceedings of the AAAI Conf Artif Intell. 2017:2408–2414.

  36. Ren Z, Sun Q, Wei D. Multiple kernel clustering with kernel k-means coupled graph tensor learning. In Proceedings of the AAAI Conf Artif Intell. 2021.

  37. Hao Z, Wang Y, Liu Z, de Melo G, Xu Z. Knowledge fusion via joint tensor and matrix factorization. Cogn Comput. 2019;12(3):642–53.

    Article  Google Scholar 

  38. Nie F, Li J, Li X, et al. Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification. In Proceedings of the Int Joint Conf Artif Intell. 2016:1881–1887.

  39. Ren Z, Sun Q, Wu B, Zhang X, Yan W. Learning latent low-rank and sparse embedding for robust image feature extraction. IEEE Trans Image Process. 2019;29:2094–107.

    Article  Google Scholar 

  40. Zhang C, Hu Q, Fu H, Zhu P, Cao X. Latent multi-view subspace clustering. In Proceedings of the IEEE Conf Comp Vis Pattern Recogn. 2017:4279–4287.

  41. Zhang C, Fu H, Hu Q, Cao X, Xie Y, Tao D, Xu D. Generalized latent multi-view subspace clustering. IEEE Trans Pattern Anal Mach Intell. 2018;42(1):86–99.

    Article  Google Scholar 

  42. Chen M-S, Huang L, Wang C-D, Huang D. Multi-view clustering in latent embedding space. Proceedings of the AAAI Conf Artif Intell. 2020;34:3513–20.

    Google Scholar 

  43. Eldén L, Park H. A procrustes problem on the stiefel manifold. Numer Math. 1999;82(4):599–619.

    Article  MathSciNet  Google Scholar 

  44. Maaten LVD, Hinton G. Visualizing data using t-sne. J Mach Learn Res. 2008;9:2579–2605.

Download references

Acknowledgements

This work was supported by the Sichuan Science and Technology Program (Grant no. 2021YJ0083), the Zhejiang Provincial Natural Science Foundation of China (Grant no. LGF21F020003), the Natural Science Foundation of Chongqing (Grant no. cstc2020jcyjmsxmX0473), and the National Statistical Science Research Project (Grant no. 2020491).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

As this article does not contain any studies with human participants or animals, the informed consent is not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Ren, Z., Luo, Y. et al. Multi-view Clustering with Latent Low-rank Proxy Graph Learning. Cogn Comput 13, 1049–1060 (2021). https://doi.org/10.1007/s12559-021-09889-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-021-09889-8

Keywords

Navigation