Skip to main content
Log in

Towards a User-Centered Feedback Design for Smart Meter Interfaces to Support Efficient Energy-Use Choices

A Design Science Approach

  • Research Paper
  • Published:
Business & Information Systems Engineering Aims and scope Submit manuscript

Abstract

Based on interviews of users’ experience with current smart-meter technologies the authors propose, implement and evaluate a user-centered design of an energy-use information system that assists private households in making efficient energy consumption decisions. Instead of providing disaggregated data, the envisioned system automatically calculates the monetary savings from replacing an appliance or by changing the operational behavior of an appliance. The information provided is personalized with respect to appliance use and also comprises information from external databases. A prototype is implemented and evaluated in a use case with white goods household appliances. The study concludes with directions for further interactivity improvements and research into the structures of an openly shared appliance database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Specific heat capacity of water (\(4186\, \mathrm{J/(kg~deg)}\) ) \(\cdot\) temperature difference (\(60\, \mathrm{deg} - 40\, \mathrm{deg} = 20 \,\mathrm{deg}\)) \(\cdot\) water mass (\(10 \,\mathrm{l} \approx 10\, \mathrm{kg }\)) \(\cdot\) Wh per joule (\(1/3600\, \mathrm{(Wh)/J}\)).

References

  • Abrahamse W, Steg L, Vlek C, Rothengatter T (2005) A review of intervention studies aimed at household energy conservation. J Environ Psychol 25(3):273–291

    Article  Google Scholar 

  • Abrahamse W, Steg L, Vlek C, Rothengatter T (2007) The effect of tailored information, goal setting, and tailored feedback on household energy use, energy-related behaviors, and behavioral antecedents. J Environ Psychol 27(4):265–276

    Article  Google Scholar 

  • AG Energiebilanzen (2014) Auswertungstabellen zur Energiebilanz für die Bundesrepublik Deutschland 1990 bis 2011. http://www.ag-energiebilanzen.de/index.php?article_id=10. Accessed 21 July 2016

  • Allcott H, Mullainathan S (2010) Behavior and energy policy. Science 327(5970):1204–1205

    Article  Google Scholar 

  • Anderson W, White V (2009) Exploring consumer preferences for home energy display functionality. Tech. rep., Centre for Sustainable Energy, Report to the Energy Savings Trust

  • Baskerville R, Pries-Heje J (2010) Explanatory design theory. Bus Inf Syst Eng 2(5):271–282. doi:10.1007/s12599-010-0118-4

    Article  Google Scholar 

  • Benders RM, Kok R, Moll HC, Wiersma G, Noorman KJ (2006) New approaches for household energy conservation in search of personal household energy budgets and energy reduction options. Energy Policy 34(18):3612–3622

    Article  Google Scholar 

  • Bhattacherjee A, Sanford C (2006) Influence processes for information technology acceptance: an elaboration likelihood model. MIS Q 30(4):805–825

    Google Scholar 

  • Brocke J, Loos P, Seidel S, Watson RT (2013) Green IS. Bus Inf Syst Eng 5(5):295–297. doi:10.1007/s12599-013-0288-y

    Article  Google Scholar 

  • Corbin J, Strauss A (2008) Basics of qualitative research: techniques and procedures for developing grounded theory. Sage, Newbury Park

    Book  Google Scholar 

  • Costanza E, Ramchurn SD, Jennings NR (2012) Understanding domestic energy consumption through interactive visualisation. In: Proceedings of the 2012 ACM conference on ubiquitous computing—ubicomp ’12. ACM Press, New York, p 216. doi:10.1145/2370216.2370251

  • Darby S (2008) Energy feedback in buildings: improving the infrastructure for demand reduction. Build Res Inf 36(5):499–508. doi:10.1080/09613210802028428

    Article  Google Scholar 

  • Darby S (2010) Smart metering: what potential for householder engagement? Build Res Inf 38(5):442–457

    Article  Google Scholar 

  • Darby S, Anderson W, White V (2011) Large-scale testing of new technology: some lessons from the UK smart metering and feedback trials. In: European council for an energy-efficient economy, Summer Study, pp 1–7

  • Dietz T, Gardner GT, Gilligan J, Stern PC, Vandenbergh MP (2009) Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. Proc Natl Acad Sci 106(44):18,452–18,456

    Article  Google Scholar 

  • Eekels J, Roozenburg N (1991) A methodological comparison of the structures of scientific research and engineering design: their similarities and differences. Design Stud 12(4):197–203. doi:10.1016/0142-694X(91)90031-Q

    Article  Google Scholar 

  • Ehrhardt-Martinez K, Donnelly KA, Laitner S (2010) Advanced metering initiatives and residential feedback programs: a meta-review for household electricity-saving opportunities. In: American Council for an Energy-Efficient Economy, Washington DC

  • European Commission (2006) Action plan for energy efficiency: raising the potential. COM(2006)545 final

  • Fischer C (2008) Feedback on household electricity consumption: a tool for saving energy? Energy Effic 1(1):79–104

    Article  Google Scholar 

  • Fitzpatrick G, Smith G (2009) Technology-enabled feedback on domestic energy consumption: articulating a set of design concerns. IEEE Pervasive Comput 8(1):37–44. doi:10.1109/MPRV.2009.17

    Article  Google Scholar 

  • Frieden BJ, Baker K (1983) The market needs help: the disappointing record of home energy conservation. J Policy Anal Manag 2(3):432–448

    Article  Google Scholar 

  • Goes PB (2014) Editor’s comments: design science research in top information systems journals. MIS Q 38(1):iii–viii. http://dl.acm.org/citation.cfm?id=2600518.2600519. Accessed 27 May 2017

  • Gregor S, Hevner AR (2013) Positioning and presenting design science research for maximum impact. MIS Q 37(2):337–356. http://dl.acm.org/citation.cfm?id=2535658.2535660

  • Gregor S, Jones D (2007) The anatomy of a design theory. J Assoc Inf Syst 8(5):312–335

    Google Scholar 

  • Grønhøj A, Thøgersen J (2011) Feedback on household electricity consumption: learning and social influence processes. Int J Consum Stud 35(2):138–145

    Article  Google Scholar 

  • Gutberlet KL (2008) Energieeffizienz im Haushalt. GFK-Tagung, Nuremberg. http://www.gfk-verein.org/veranstaltungen/gfk-tagung-2008/vortrag-2. Accessed 4 July 2008

  • Han Q, Nieuwenhijsen I, de Vries B, Blokhuis E, Schaefer W (2013) Intervention strategy to stimulate energy-saving behavior of local residents. Energy Policy 52:706–715

    Article  Google Scholar 

  • Hargreaves T, Nye M, Burgess J (2013) Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term. Energy Policy 52:126–134. doi:10.1016/j.enpol.2012.03.027

    Article  Google Scholar 

  • Hart G (1992) Nonintrusive appliance load monitoring. Proc IEEE 80(12):1870–1891. doi:10.1109/5.192069

    Article  Google Scholar 

  • Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. MIS Q 28(1):75–105

    Google Scholar 

  • Honebein PC, Cammarano RF, Donnelly KA (2009) Will smart meters ripen or rot? Five first principles for embracing customers as co-creators of value. Electric J 22(5):39–44

    Article  Google Scholar 

  • Hopf K, Sodenkamp M, Kozlovkiy I, Staake T (2016) Feature extraction and filtering for household classification based on smart electricity meter data. Comput Sci Res Dev 31(3):141–148

    Article  Google Scholar 

  • ISO (2010) ISO 9241–210:2010: Ergonomics of human-system interaction—Part 210: human-centred design for interactive systems. Tech. rep., International Organization for Standardization, Geneva

  • Kamb ML, Rhodes F, Hoxworth T, Rogers J, Lentz A, Kent C, MacGowen R, Peterman TA (1998) What about money? Effect of small monetary incentives on enrollment, retention, and motivation to change behaviour in an HIV/STD prevention counselling intervention. The Project RESPECT Study Group. Sex Transm Infect 74(4):253–255

    Article  Google Scholar 

  • Kuckart U, Rädiker S, Rheingans-Heintze A (2006) Umweltbewusstsein in Deutschland 2006—Ergebnisse einer repräsentativen Bevölkerungsumfrage. Tech. rep., Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU)

  • Langgassner W (2001) Energieeffizienz elektrischer Antriebe in Haushaltsgeräten. E und M, Energie-und-Management-Verl.-Ges, Herrsching

  • Liang J, Ng SKK, Kendall G, Cheng JWM (2010) Load signature study part II: disaggregation framework, simulation, and applications. IEEE Trans Power Deliv 25(2):561–569. doi:10.1109/TPWRD.2009.2033800

    Article  Google Scholar 

  • Loock CM, Staake T, Thiesse F (2013) Motivating energy-efficient behavior with green is: an investigation of goal setting and the role of defaults. MIS Q 37(4):1313–1332

    Article  Google Scholar 

  • Lossin F, Loder A, Staake T (2016) Energy informatics for behavioral change. Comput Sci Res Dev 31(3):149–155. doi:10.1007/s00450-014-0295-3

    Article  Google Scholar 

  • Mattle P, Aigner M, Schmautzer E, Fickert L (2011) Smart Plug—Konzept für ein intelligentes Lastmanagementsystem für Einzelverbraucher. In: Energieversorgung 2011: Märkte um des Marktes Willen?, TU Wien. Internationale Energiewirtschaftstagung. Institut für Energiesysteme und Elektrische Antriebe, Vienna, pp 96–97, 7

  • McMakin AH, Malone EL, Lundgren RE (2002) Motivating residents to conserve energy without financial incentives. Environ Behav 34(6):848–863

    Article  Google Scholar 

  • Nilsson A, Bergstad CJ, Thuvander L, Andersson D, Andersson K, Meiling P (2014) Effects of continuous feedback on households electricity consumption: potentials and barriers. Appl Energy 122:17–23

    Article  Google Scholar 

  • Peffers K, Tuunanen T, Rothenberger MA, Chatterjee S (2007) A design science research methodology for information systems research. J Manag Inf Syst 24(3):45–77

    Article  Google Scholar 

  • Petersen JE, Shunturov V, Janda K, Platt G, Weinberger K (2007) Dormitory residents reduce electricity consumption when exposed to real-time visual feedback and incentives. Int J Sustain Higher Educ 8(1):16–33. doi:10.1108/14676370710717562

    Article  Google Scholar 

  • Poortinga W, Steg L, Vlek C, Wiersma G (2003) Household preferences for energy-saving measures: a conjoint analysis. J Econ Psychol 24(1):49–64

    Article  Google Scholar 

  • Pullinger M, Lovell H, Webb J (2014) Influencing household energy practices: a critical review of UK smart metering standards and commercial feedback devices. Technol Anal Strateg Manag 26(10):1144–1162

    Article  Google Scholar 

  • Ritchie JRB, McDougall GHG (1985) Designing and marketing consumer energy conservation policies and programs: implications from a decade of research. J Public Policy Mark 4(1):14–32

    Google Scholar 

  • Rüdenauer I, Eberle U, Grieß hammer R (2006) Ökobilanz und Lebenszykluskostenrechnung Wäschewaschen. Tech. rep., Öko-Institut e.V., Freiburg/Hamburg. http://www.oeko.de/oekodoc/289/2006-008-de.pdf. Accessed 27 May 2017

  • Schwartz T, Denef S, Stevens G, Ramirez L, Wulf V (2013) Cultivating energy literacy. In: Proceedings of the SIGCHI conference on human factors in computing systems—CHI ’13. ACM Press, New York, p 1193. doi:10.1145/2470654.2466154

  • Simmhan Y, Aman S, Cao B, Giakkoupis M, Kumbhare A, Zhou Q, Paul D, Fern C, Sharma A, Prasanna V (2011) An informatics approach to demand response optimization in smart grids. Nat Gas 31:60

    Google Scholar 

  • Steg L (2008) Promoting household energy conservation. Energy Policy 36(12):4449–4453

    Article  Google Scholar 

  • Strengers Y (2011) Designing eco-feedback systems for everyday life. In: Proceedings of the 2011 annual conference on human factors in computing systems—CHI ’11. ACM Press, New York, pp 2135–2144. doi:10.1145/1978942.1979252

  • Thuvander L, Meiling P, Andersson K (2012) Energivisualisering via display: Förändras beteendet när hyresgästerna har möjlighet att följa sin elförbrukning? Tech. rep., Chalmers University of Technology, Göteborg

  • Umweltbundesamt (2012) Ausstattung privater Haushalte mit langlebigen Gebrauchsgütern. Tech. rep., Daten zur Umwelt. http://www.umweltbundesamt-daten-zur-umwelt.de/umweltdaten/public/theme.do?nodeIdent=3535. Accessed 15 Mar 2013

  • Urquhart C, Lehmann H, Myers MD (2009) Putting the theory back into grounded theory: guidelines for grounded theory studies in information systems. Inf Syst J 20(4):357–381. doi:10.1111/j.1365-2575.2009.00328.x

    Article  Google Scholar 

  • Van Dam S, Bakker C, Van Hal J (2010) Home energy monitors: impact over the medium-term. Build Res Inf 38(5):458–469

    Article  Google Scholar 

  • Van Dam S, Bakker C, Van Hal J (2012) Insights into the design, use and implementation of home energy management systems. J Design Res 10(1–2):86–101

    Article  Google Scholar 

  • Vassileva I, Odlare M, Wallin F, Dahlquist E (2012) The impact of consumers feedback preferences on domestic electricity consumption. Appl Energy 93:575–582

    Article  Google Scholar 

  • Vassileva I, Dahlquist E, Wallin F, Campillo J (2013) Energy consumption feedback devices impact evaluation on domestic energy use. Appl Energy 106:314–320

    Article  Google Scholar 

  • Wallenborn G, Orsini M, Vanhaverbeke J (2011) Household appropriation of electricity monitors. Int J Consum Stud 35(2):146–152. doi:10.1111/j.1470-6431.2010.00985.x

    Article  Google Scholar 

  • Walls JG, Widmeyer GR, El Sawy OA (1992) Building an information system design theory for vigilant EIS. Inf Syst Res 3(1):36–59. doi:10.1287/isre.3.1.36

    Article  Google Scholar 

  • Weiss M (2010) emeter: Stromverbrauchsfeedback auf basis eines pervasive energy monitoring systems, Doktoranden-Workshop Energieinformatik 2010. https://www.vs.inf.ethz.ch/publ/papers/weismark-emeter-2010.pdf. Accessed 16 July 2016

  • Weiss M, Staake T, Mattern F, Fleisch E (2012) PowerPedia: changing energy usage with the help of a community-based smartphone application. Pers Ubiquitous Comput 16(6):655–664

    Article  Google Scholar 

  • White AL (1993) Accounting for pollution prevention. EPA J 19(3):23–25

    Google Scholar 

  • Zhou K, Yang S (2016) Understanding household energy consumption behavior: the contribution of energy big data analytics. Renew Sustain Energy Rev 56:810–819

    Article  Google Scholar 

  • Zufferey D, Gisler C, Khaled OA, Hennebert J (2012) Machine learning approaches for electric appliance classification. 11th International conference on information science, signal processing and their applications (ISSPA). IEEE, Montreal, pp 740–745

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Michael Schilling and Henning Quellenberg for their research assistance during the development of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Dalén.

Additional information

Accepted after three revisions by Prof. Dr. Jarke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalén, A., Krämer, J. Towards a User-Centered Feedback Design for Smart Meter Interfaces to Support Efficient Energy-Use Choices. Bus Inf Syst Eng 59, 361–373 (2017). https://doi.org/10.1007/s12599-017-0489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12599-017-0489-x

Keywords

Navigation