Skip to main content
Log in

Suddenly expanding recirculating and non-recirculating viscoplastic non-newtonian flows

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Viscoplastic non-Newtonian flows through axisymmetric 1:5 and 1:2 sudden expansions have been studied numerically by solving the mass and momentum conservation equations and the Bingham constitutive equation. Two distinct viscoplastic flow regimes are observed. For a given Reynolds number, increasing the yield number, a non-dimensional yield stress results in transitioning from a recirculating to a non-recirculating viscoplastic flow regime. For Newtonian fluids, a typical separating and reattaching flow field with a large corner recirculation region and a reattachment point is observed. For a low yield number viscoplastic non-Newtonian flow, the incoming flow separates, creating a weak recirculation region, and unyielded attached-to-the wall, corner and impingement regions. For a high yield number, a non-separating viscoplastic flow field forms, resulting in the elimination of flow recirculation and the formation of significant unyielded region behind the expansion plane. For Newtonian and low yield number viscoplastic flows, axisymmetric 1:5 expansion flows result in more intense recirculation, larger reattachment, and flow redevelopment lengths in comparison with axisymmetric 1:2 expansion flows.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

dD :

Diameters of small and large pipes

e i :

Relative recirculation intensity, ratio of the maximum amount of backflow in the recirculation region to the inlet flow rate \({{ - \psi_{\hbox{min} } } \mathord{\left/ {\vphantom {{ - \psi_{\hbox{min} } } {\psi_{\hbox{max} } }}} \right. \kern-0pt} {\psi_{\hbox{max} } }}\)

ER:

Expansion ratio, R o/R or D/d

L r :

Reattachment length

P :

Non-dimensional pressure, \(P^{*} /\rho u_{b}^{2}\)

r :

Non-dimensional radial distance, r */R

RR o :

Radii of small and large pipes

Re:

Reynolds number, ρdu b /η p

u :

Non-dimensional streamwise velocity, u */u b

u b :

Inflow streamwise bulk velocity, \(2\int\nolimits_{0}^{R} {u^{*} r^{*} dr^{*} /R^{2} }\)

x :

Non-dimensional streamwise distance, x */R

Y :

Yield number, τ y d/η p u b

ψ max :

Maximum value of stream function

ψ min :

Minimum value of stream function

\(\dot{\gamma }_{{_{\text{ij}} }}\) :

Rate of deformation tensor, ∂u i /∂x j  + ∂u j /∂x i

\(\dot{\gamma }_{{_{\text{II}} }}\) :

Second invariant of rate of deformation tensor, \(\dot{\gamma }_{{_{\text{ij}} }}\) \(\dot{\gamma }_{{_{\text{ij}} }}\)

η p :

Plastic viscosity

μ eff :

Non-dimensional effective viscosity, \(\mu_{{_{\text{eff}} }}^{ * } /\eta_{p}\)

ρ :

Density

τ ij :

Stress tensor element

τ y :

Yield stress

*:

Dimensional quantities

b:

Bulk properties of initial jet

c:

Centerline properties

i:

Inflow properties, i.e. properties at x = 0

References

  • Alehossein H, Shen B, Qin Z, Huddlestone-Holmes C (2012) Flow analysis, transportation, and deposition of frictional viscoplastic slurries and pastes in civil and mining engineering. J Mater Civ Eng 24(6):644–657

    Article  Google Scholar 

  • Back LH, Roschke EJ (1972) Shear-layer flow regimes and wave instabilities and reattachment lengths downstream of an abrupt circular channel expansion. J Appl Mech 39:677–681

    Article  Google Scholar 

  • Badekas D, Knight DD (1992) Eddy correlations for laminar axisymmetric sudden expansion flows. ASME J Fluids Eng 114:119–121

    Article  Google Scholar 

  • Bird RB, Dai GC, Yarusso BJ (1983) The rheology and flow of viscoplastic materials. Rev Chem Eng 1(1):1–70

    Google Scholar 

  • Cantwell CD, Barkley D, Blackburn HM (2010) Transient growth analysis of flow through a sudden expansion in a circular pipe. Phys Fluids 22:034101

    Article  Google Scholar 

  • Chhabra RP, Richardson JF (2008) Non-Newtonian flow and applied rheology: engineering applications, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Claesson J, Rasmuson A, Wiklund J, Wikström T (2013) Measurement and analysis of flow of concentrated fiber suspensions through a 2-D sudden expansion using UVP. AIChE J 59:1012–1021. doi:10.1002/aic.13881

    Article  Google Scholar 

  • Dağtekin I, Ünsal M (2010) Numerical analysis of axisymmetric and planar sudden expansion flows for laminar regime. Int J Numer Methods Fluids 65(9):1133–1144

    Article  Google Scholar 

  • Devenport WJ, Sutton EP (1993) An experimental study of two flows through an axisymmetric sudden expansion. Exp Fluids 14:423–432

    Article  Google Scholar 

  • Ellwood KRJ, Georgiou GC, Papanastasiou TC, Wilkes JO (1990) Laminar jets of Bingham plastic liquids. J Rheol 34:787–812

    Article  Google Scholar 

  • Giannetti F, Luchini P, Marino L (2011) Stability and sensitivity analysis of non-newtonian flow through an axisymmetric expansion. J Phys Conf Series 318(3):032015 IOP Publishing

    Article  Google Scholar 

  • Gram A, Silfwerbrand J, Lagerblad B (2014) Obtaining rheological parameters from flow test-analytical, computational and lab test approach. Cem Concr Res 63:29–34

    Article  Google Scholar 

  • Halmos AL, Boger DV, Cabelli A (1975a) The behavior of a power-law fluid flowing through a sudden expansion: part I. A numerical solution. AIChE J 21(3):540–549

    Article  Google Scholar 

  • Halmos AL, Boger DV, Cabelli A (1975b) The behavior of a power-law fluid flowing through a sudden expansion: part II. Experimental verification. AIChE J 21(3):550–553

    Article  Google Scholar 

  • Hammad KJ (2000) Effect of hydrodynamic conditions on heat transfer in a complex viscoplastic flow field. Int J Heat Mass Transf 43(6):945–962

    Article  MATH  Google Scholar 

  • Hammad KJ (2012) Depth of penetration of a submerged viscoplastic non-Newtonian jet. Proc ASME 44755, vol 1. Symposia Parts A and B, pp 1075–1083. doi:10.1115/FEDSM2012-72456

  • Hammad KJ (2014a) Velocity and momentum decay characteristics of a submerged viscoplastic jet. Trans ASME J Fluids Eng 136(2):021205. doi:10.1115/1.4025990

    Article  MathSciNet  Google Scholar 

  • Hammad KJ (2014b) Visualization of an annular viscoplastic jet. J Visualization 17(1):5–16. doi:10.1007/s12650-013-0190-1

    Article  MathSciNet  Google Scholar 

  • Hammad KJ (2015) The flow behavior of a biofluid in a separated and reattached flow region. Trans ASME J Fluids Eng. doi:10.1115/1.4029727

    Google Scholar 

  • Hammad KJ, Wang F, Ötügen MV, Vradis GC (1997) Suddenly expanding axisymmetric flow of a yield stress fluid. Album Vis 14:17–18

    Google Scholar 

  • Hammad KJ, Ötügen MV, Arik EB (1999a) A PIV study of the laminar axisymmetric sudden expansion flow. Exp Fluids 26:266–272

    Article  Google Scholar 

  • Hammad KJ, Ötügen MV, Vradis GC, Arik EB (1999b) Laminar flow of a nonlinear viscoplastic fluid through an axisymmetric sudden expansion. ASME J Fluids Eng 121(2):488–496

    Article  Google Scholar 

  • Hammad KJ, Vradis GC, Ötügen MV (2001) Laminar flow of a Herschel-Bulkley fluid over an axisymmetric sudden expansion. ASME J Fluids Eng 123(3):588–594

    Article  Google Scholar 

  • Heath SJ, Olson JA, Buckley KR, Lapi S, Ruth TJ, Martinez DM (2007) Visualization of the flow of a fiber suspension through a sudden expansion using PET. AIChE J 53(2):327–334

    Article  Google Scholar 

  • Jay P, Magnin A, Piau JM (2001) Viscoplastic fluid flow through a sudden axisymmetric expansion. AIChE J 47:2155–2166

    Article  Google Scholar 

  • Jeong SW (2013) Determining the viscosity and yield surface of marine sediments using modified Bingham models. Geosci J 17(3):241–247

    Article  Google Scholar 

  • Jossic L, Briguet A, Magnin A (2002) Segregation under flow of objects suspended in a yield stress fluid and NMR imaging visualization. Chem Eng Sci 57:409–418

    Article  Google Scholar 

  • Khodaparast S, Borhani N, Thome JR (2014) Sudden expansions in circular microchannels: flow dynamics and pressure drop. Microfluid Nanofluid 17(3):561–572

    Article  Google Scholar 

  • Latornell DJ, Pollard A (1986) Some observations on the evolution of shear layer instabilities in laminar flow through axisymmetric sudden expansions. Phys Fluids 29(9):2828

    Article  Google Scholar 

  • Macagno EO, Hung TK (1967) Computational and experimental study of a captive annular eddy. J Fluid Mech 28:43–64

    Article  Google Scholar 

  • Mahaut F, Gauthier G, Gouze P, Luquot L, Salin D, Martin J (2014) Rheological characterization of olivine slurries, sheared under CO2 pressure. Environ Prog Sustainable Energy 33:572–580. doi:10.1002/ep.11826

    Article  Google Scholar 

  • Mao M, Hu W, Choi YT, Wereley NM, Browne AL, Ulicny J, Johnson N (2013) Nonlinear modeling of magnetorheological energy absorbers under impact conditions. Smart Mater Struct 22(11):115015. doi:10.1088/0964-1726/22/11/11501

    Article  Google Scholar 

  • Mendes PRS, Naccache MF, Varges PR, Marchesini FH (2007) Flow of viscoplastic liquids through axisymmetric expansions–contractions. J Non-Newton Fluid Mech 142:207–217

    Article  MATH  Google Scholar 

  • Meng X, Zhang Y, Zhou F, Chu PK (2012) Effects of carbon ash on rheological properties of water-based drilling fluids. J Petrol Sci Eng 100:1–8

    Article  Google Scholar 

  • Mitsoulis E, Huilgol RR (2004) Entry flows of Bingham plastics in expansions. J Non-Newton Fluid Mech 142:207–217

    Google Scholar 

  • Oliveira PJ, Pinho FT, Schulte A (1998) A general correlation for the local loss coefficient in Newtonian axisymmetric sudden expansions. Int J Heat Fluid Flow 19:655–660

    Article  Google Scholar 

  • Papanastasiou TC (1987) Flow of materials with yield. J Rheol 31(5):385–403

    Article  MATH  Google Scholar 

  • Pinho FT, Oliveira PJ, Miranda JP (2003) Pressure losses in the laminar flow of shear-thinning power-law fluids across a sudden axisymmetric expansion. Int J Heat Fluid Flow 24(5):747–761

    Article  Google Scholar 

  • Sanmiguel-Rojas E, del Pino C, Gutiérrez-Montes C (2010) Global mode analysis of a pipe flow through a 1:2 axisymmetric sudden expansion. Phys Fluids 22:071702

    Article  Google Scholar 

  • Sanmiguel-Rojasa E, Mullin T (2012) Finite-amplitude solutions in the flow through a sudden expansion in a circular pipe. J Fluid Mech 691:201–213

    Article  Google Scholar 

  • Scott PS, Mirza F (1988) Finite-element simulation of laminar viscoplastic flows with regions of recirculation. J Rheol 32(4):387–400

    Article  Google Scholar 

  • Scott PS, Mirza FA, Vlachopoulos J (1986) A finite element analysis of laminar flows through planar and axisymmetric abrupt expansions. Comput Fluids 14:423–432

    Article  Google Scholar 

  • Tavakkoli M, Taghikhani V, Pishvaie MR, Masihi M, Panuganti SR, Chapman WG (2014) Investigation of oil-asphaltene slurry rheological behavior. J Dispers Sci Technol 35(8):1155–1162

    Article  Google Scholar 

  • Teyssandier RG, Wilson MP (1974) An analysis of flow through sudden enlargements in pipes. J Fluid Mech 64:85–96

    Article  MATH  Google Scholar 

  • Vradis GC, Ötügen MV (1997) The axisymmetric sudden expansion flow of a non-Newtonian viscoplastic fluid. ASME J Fluids Eng 119(1):193–200

    Article  Google Scholar 

  • Wang CH, Ho JR (2008) Lattice Boltzmann modeling of Bingham plastics. Phys A 387(19–20):4740–4748

    Article  Google Scholar 

  • Wu YH, Liu KF (2015) Formulas for calibration of rheological parameters of bingham fluid in couette rheometer. ASME J Fluids Eng 137(4):041202

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges the support received through a 2015–2016 CSU-AAUP Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled J. Hammad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammad, K.J. Suddenly expanding recirculating and non-recirculating viscoplastic non-newtonian flows. J Vis 18, 655–667 (2015). https://doi.org/10.1007/s12650-015-0279-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-015-0279-9

Keywords

Navigation