Skip to main content
Log in

Geometrical characteristic-based stream surface of 3D flow field

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

This paper addressed a novel stream surface generation method to represent the structure of flow field smoother, feature more prominently and better visual clarity than the conventional triangulate method. To have a nice expressive force in the visualization of 3D flow field, first a strategy for adaptive streamline based on geometrical characteristic in 3D flow field space is presented to show a clear flow field pattern and the important flow features in our algorithm. Characteristics such as Euclidean distance between adjacent streamlines, curvature and torsion of each individual streamline are considered as influence factors to determine the number of seed points in the focused regions. Then, in the process of stream surface generation, an adaptive triangulation technique based on geometrical characteristic of streamlines is adopted to keep the structural continuity, smoothness, concavity and convexity of stream surface. At last, the whole algorithm is implemented using CUDA, and it can effectively shorten the lag phase appeared in the process of interaction with the control line and parameter modification. Compared with conventional triangulate method, comprehensive experiments conducted on dataset of delta-wing show that the proposed algorithm can better reflect the underlying properties of the flow field and greatly improve the readability of 3D flow field dataset.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Brambilla A, Carnecky R, Peikert R, Viola I, Hauser H (2012) Illustrative flow visualization: state of the art, trends and challenge. Eurographics state-of-the-art reports, pp 75–94. doi:10.2312/conf/EG2012/stars/075-094

  • Cabral B, Leedom C (1993) Imaging vector fields using line integral convolution. In: Proceedings of ACM SIGGRAPH conference, pp 263–270. doi:10.1145/166117.166151

  • Camp D, Childs H, Garth C, Pugmire D, Joy KI (2012) Parallel stream surface computation for large data sets. In: Proceedings of IEEE symposium on LDAV 2012, pp 39–47. doi:10.1109/LDAV.2012.6378974

  • Edmunds M, Mcloughlin T, Laramee RS, Chen G, Zhang E (2011) Automatic stream surface seeding. Comput Graph Forum 31(3):1095–1104. doi:10.2312/EG2011/short/053-056

    Google Scholar 

  • Edmunds M, Laramee RS, Chen G, Max N, Zhang E, Ware C (2012) Surface-based flow visualization. Comput Graph 36(8):974–990. doi:10.1016/j.cag.2012.07.006

    Article  Google Scholar 

  • Farin G (2002) Curves and surfaces for CAGD: a practical guide, 5th edn. Morgan Kaufmann Publishers Inc, Burlington

    Google Scholar 

  • Garth C, Tricoche X, Salzbrunn T, Bobach T, Scheuermann G (2004) Surface techniques for vortex visualization. In: Proceedings of the sixth joint eurographics-IEEE TCVG symposium on visualization, pp 155–164. doi:10.2312/VisSym/VisSym04/155-164

  • Garth C, Tricoche X, Salzbrunn T, Bobach T, Joy K (2008) Generation of accurate integral surfaces in time-dependent vector fields. IEEE Trans Visual Comput Graph 14(6):1404–1411. doi:10.1109/TVCG.2008.133

    Article  Google Scholar 

  • Hultquist J (1990) Interactive numerical flow visualization using stream surfaces. Comput Syst Eng 1(2-4):349–353. doi:10.1016/0956-0521(90)90021-C

    Article  Google Scholar 

  • Jobard B, Lefer W (1997) Creating evenly-spaced streamlines of arbitrary density. In: Proceedings of eighth eurographics workshop on visualization in scientific computing, pp 45–55. doi:10.1007/978-3-7091-6876-9_5

  • Krishnan H, Garth C, Joy K (2009) Time and streak surfaces for flow visualization in large time-varying data sets. IEEE Trans Visual Comput Graph 15(6):1267–1274. doi:10.1109/TVCG.2009.190

    Article  Google Scholar 

  • Laramee R-S, Hauser H, Doleisch H, Vrolijk B, Post FH, Weiskopf D (2004) The state of the art in flow visualization: dense and texture-based techniques. Comput Graph Forum 23(2):203–221. doi:10.1111/j.1467-8659.2004.00753.x

    Article  Google Scholar 

  • Laramee R, Garth C, Schneider J, Hauser H (2006) Texture advection on stream surfaces: a novel hybrid visualization applied to CFD simulation results. In: Proceedings of eurographics/IEEE symposium on visualization, pp 155–162. doi:10.2312/VisSym/EuroVis06/155-162

  • Li L, Shen H-W (2007) Image-based streamline generation and rendering. IEEE Trans Visual Comput Graph 13(3):630–640. doi:10.1109/TVCG.2007.1009

    Article  Google Scholar 

  • Liu Z, Moorhead RJ, Groner J (2006) An advanced evenly-spaced streamline placement algorithm. IEEE Trans Visual Comput Graph 12(5):965–972. doi:10.1109/TVCG.2006.116

    Article  Google Scholar 

  • Liu KW, Shen HW, Peterka T (2014) Scalable computation of stream surfaces on large scale vector fields. In: Proceedings of the international conference for high performance computing, networking, storage and analysis, pp 1008–1019. doi:10.1109/SC.2014.87

  • Loffelmann H, Mroz L, Groller E, Purgathofer W (1997) Stream arrows: enhancing the use of stream surfaces for the visualization of dynamical systems. Visual Comput 13(8):359–369. doi:10.1007/s003710050110

    Article  Google Scholar 

  • Mao X, Hatanaka Y, Higashida H, Imamiya A (1998) Image-guided streamline placement on curvilinear grid surfaces. In: Proceedings of IEEE Visualization’98, pp 135–142. doi:10.1109/VISUAL.1998.745295

  • McLoughlin T, Laramee RS, Peikert R, Post FH, Chen M (2010) Over two decades of integration-based, geometric flow visualization. Comput Graph Forum 29(6):1807–1829. doi:10.1111/j.1467-8659.2010.01650.x

    Article  Google Scholar 

  • Mebarki A, Alliez P, Devillers O (2005) Farthest point seeding for efficient placement of streamlines. In: Proceedings of visualization, pp 479–486. doi:10.1109/VISUAL.2005.1532832

  • Peng Z, Laramee RS (2009) Higher dimensional vector field visualization: a survey. In: Proceedings of theory and practice of computer graphics, pp 149–163. doi:10.2312/LocalChapterEvents/TPCG/TPCG09/149-163

  • Rosanwo O, Petz C, Prohaska S, Hege H-C, Hotz I (2009) Dual streamline seeding. In: Proceedings of IEEE Pacific visualization symposium, pp 9–16. doi:10.1109/PACIFICVIS.2009.4906832

  • Salzbrunn T, Janicke H, Wishgoll T, Scheuermann G (2008) The state of the art in flow visualization: partition-based techniques. In: Proceedings of simulation and visualization conference, pp 75–94

  • Schafhitzel T, Tejada E, Weiskopf D, Ertl T (2007) Point-based stream surfaces and path surfaces. In: Proceedings of graphics interface, pp 289–296. doi:10.1145/1268517.1268564

  • Schlemmer M, Hotz I, Hamann B, Morr F, Hagen H (2007) Priority streamlines: a context-based visualization of flow fields. In: Proceedings of eurographics/IEEE VGTC on visualization, pp 227–234. doi:10.2312/VisSym/EuroVis07/227-234

  • Schneider D, Wiebel A, Scheuermann G (2009) Smooth stream surfaces of 4th order precision. Comput Graph Forum 28(3):871–878. doi:10.1111/j.1467-8659.2009.01462.x

    Article  Google Scholar 

  • Schneider D, Reich W, Wiebel A, Scheuermann G (2010) Topology aware stream surfaces. Comput Graph Forum 29(3):1153–1161. doi:10.1111/j.1467-8659.2009.01672.x

  • Spencer B, Laramee R-S, Chen G, Zhang E (2009) Evenly spaced streamlines for surfaces: an image-based approach. Comput Graph Forum 28(6):1618–1631. doi:10.1111/j.1467-8659.2009.01352.x

    Article  Google Scholar 

  • Turk G, Banks D (1996) Image-guided streamline placement. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques, pp 453–460. doi:10.1145/237170.237285

  • van Wijk JJ (2002) Image based flow visualization. ACM Trans Graph 21(3):745–754. doi:10.1145/566654.566646

    Article  Google Scholar 

  • Verma V, Kao D, Pang A (2000) A flow-guided streamline seeding strategy. In: Proceedings of IEEE visualization, pp 163–170. doi:10.1109/VISUAL.2000.885690

  • Weinkauf T, Theisel H (2002) Curvature measures of 3D vector fields and their applications. J WSCG 10(2):507–514. doi:10.1.1.13.9738

  • Wu K, Liu Z, Zhang S, Moorhead R-J (2010) Topology-aware evenly space streamline placement. IEEE Trans Visual Comput Graph 16(5):791–801. doi:10.1109/TVCG.2009.206

    Article  Google Scholar 

  • Xu L, Lee T-Y, Shen H-W (2010) An information-theoretic framework for flow visualization. IEEE Trans Visual Comput Graph 16(6):1216–1224. doi:10.1109/TVCG.2010.131

    Article  Google Scholar 

  • Ye X, Kao D, Pang A (2000) A flow-guided streamline seeding strategy. In: Proceedings of Visualization’00, pp 163–170. doi:10.1109/VISUAL.2000.885690

  • Ye X, Kao D, Pang A (2005) Strategy for seeding 3D streamlines. In: Proceedings of IEEE Visualization’05, pp 471–478. doi:10.1109/VISUAL.2005.1532831

  • Yu H, Wang C, Shene C-K, Chen JH (2012) Hierarchical streamline bundles. IEEE Trans Visual Comput Graph 18(8):1353–1367. doi:10.1109/TVCG.2011.155

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants from National Natural Science Foundation of China (Grant No. 61303127), Project of Science and Technology Department of Sichuan Province (Grant Nos. 2014SZ0223, 2014GZ0100, 2015GZ0212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wu, Y. & Wu, B. Geometrical characteristic-based stream surface of 3D flow field. J Vis 21, 281–294 (2018). https://doi.org/10.1007/s12650-017-0447-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-017-0447-1

Keywords

Navigation