Skip to main content
Log in

Annular flow dynamic characteristics of two inverse coaxial rotational cones

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Dye liquid visualization and PIV experiments were conducted to reveal the influence of the Reynolds number (Re) and the presence of an end plate at the upper boundary on the annular flow dynamics characteristics of coaxial cones. The key flow information, such as the vorticity and velocity distributions, time-averaged flow field, and Reynolds stresses, were obtained by processing the velocity field. The Taylor vortex dynamics mechanism was studied based on the quantitative evaluation of the periodic vortex transformations. The experimental results showed that there was upward flow in the annulus at very low Reynolds numbers (Re = 107 and 160), and the annular flow transitioned from an upward to a downward pattern as Re (Re ≥ 214) increased. The first vortex was always separated by a negative vortex, B2, generated in the top right corner for Re = 214–642. A counterclockwise vortex under the free water surface always formed because the centrifugal force dominated at the water level, and there was always a fixed clockwise vortex under the upper cap because the dynamic pressure dominated at the non-slip wall surface for Re = 214–1925. The dominant convex outward or concave inward flow reflected the dominant motive source force. The total Reynolds stress increased with the increase in Re, and the magnitudes of the stresses were in the following order: radial normal stress > axial normal stress > shear stress.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Aujogue K, Pothérat A et al (2018) Experimental study of the convection in a rotating tangent cylinder. J Fluid Mech 843:355–381

    Article  Google Scholar 

  • Bao F, Zeng HL, Zou H et al (2018) Mechanism and experimental research on fluid flow in annulus of coaxial rotating conical cylinders. J Beijing Univ Aeronaut Astronaut 44(8):1577–1586

    Google Scholar 

  • Canuto D, Taira K (2015) Two dimensional compressible viscous flow around a circular cylinder. J Fluid Mech 785:349–371

    Article  MathSciNet  MATH  Google Scholar 

  • Daniel BE (2014) Subcritical transition to turbulence in Taylor–Couette flow. Georgia Institute of Technology

  • Elbaz S, Gat A (2016) Axial creeping flow in the gap between a rigid cylinder and a concentric elastic tube. J Fluid Mech 806:580–602

    Article  MathSciNet  MATH  Google Scholar 

  • Fardin MA, Perge C, Taberlet N (2014) “The hydrogen atom of fluid dynamics”—introduction to the Taylor–Couette flow for soft matter scientists. Soft Matter 10(20):3523–3535

    Article  Google Scholar 

  • Flór JB, Hirschberg L, Oostenrijk BH et al (2018) Onset of centrifugal instability at a rotating cylinder in a stratified fluid. Phys Fluids 30(8):084103

    Article  Google Scholar 

  • Grossmann S, Lohse D, Sun C (2016) High-Reynolds number Taylor–Couette turbulence. Annu Rev Fluid Mech 48(48):53–80

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Zhang J et al (2014) A numerical investigation of flow between rotating conical cylinders of two different configurations. J Hydrodyn 26(3):431–435

    Article  Google Scholar 

  • Majji MV, Morris JF (2018) Inertial migration of particles in Taylor–Couette flows. Phys Fluids 30(3):033303

    Article  Google Scholar 

  • Munir A, Zhao M, Wu H et al (2018) Three-dimensional numerical investigation of vortex-induced vibration of a rotating circular cylinder in uniform flow. Phys Fluids 30(5):053602

    Article  Google Scholar 

  • Narasimhamurthy VD, Andersson HI, Pettersen B (2014) Novel features of a fully developed mixing-layer between co-flowing laminar and turbulent Couette flows. Phys Fluids 26(3):031703

    Article  Google Scholar 

  • Noui-Mehidi MN, Wimmer M (1999) Free surface effects on the flow between conical cylinders. Acta Mesh 135:13–25

    MATH  Google Scholar 

  • Noui-Mehidi MN, Ohmura N, Kataoka K (2005) Dynamics of the helical flow between rotating conical cylinders. J Fluids Struct 20(3):331–344

    Article  Google Scholar 

  • Ohmura N, Kataoka K, Mizumoto T et al (2005) Effect of vortex cell structure on bifurcation properties in a Taylor vortex flow system. J Chem Eng Jpn 28(6):758–764

    Article  Google Scholar 

  • Ostilla-Mónico R, Verzicco R et al (2016) Turbulent Taylor-Couette flow with stationary inner cylinder. J Fluid Mech. https://doi.org/10.1017/jfm.2016.400

    MathSciNet  MATH  Google Scholar 

  • Ostilla-Mónico R, van der Poel EP, Verzicco R et al (2014) Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys Fluids 26(1):015114

    Article  Google Scholar 

  • Riahi M, Aniss S, Ouazzani Touhami M (2019) Families of reversing and non-reversing Taylor vortex flows between two co-oscillating cylinders with different amplitudes. Phys Fluids 31(1):014101

    Article  Google Scholar 

  • Sciacchitano A, Scarano F, Wieneke B (2012) Multi-frame pyramid correlation for time-resolved PIV. Exp Fluids 53(4):1087–1105

    Article  Google Scholar 

  • Seyed-Aghazadeh B, Modarres-Sadeghi Y (2015) An experimental investigation of vortex-induced vibration of a rotating circular cylinder in the crossflow direction. Phys Fluids 27(6):067101

    Article  Google Scholar 

  • Wimmer M (2000) Taylor vortices at different geometries. Phys Rotat Fluids 549:194–212

    Article  Google Scholar 

  • Wong K, Zhao J et al (2017) Experimental investigation of flow-induced vibration of a rotating circular cylinder. J Fluid Mech 829:486–511

    Article  Google Scholar 

  • Zhu H, Wang C et al (2017) Tomographic PIV investigation on 3D wake structures for flow over a wall-mounted short cylinder. J Fluid Mech 831:743–778

    Article  Google Scholar 

Download references

Funding

The funding for this study was received from Joint Pre-research Foundation of Military Equipment Department and Ministry of Education (6141A02033529); National Natural Science Foundation of China (11072206); and Natural Science Foundation of the Fujian Province, China (2012J01023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhirong Liu or Rui Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Li, S., Bao, F. et al. Annular flow dynamic characteristics of two inverse coaxial rotational cones. J Vis 22, 697–712 (2019). https://doi.org/10.1007/s12650-019-00570-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-019-00570-9

Keywords

Navigation