Skip to main content
Log in

A clustering-based approach to vortex extraction

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Since vortex is an important flow structure and has significant influence on numerous industrial applications, vortex extraction is always a research hotspot in flow visualization. This paper presents a novel vortex extraction method by employing a machine learning clustering algorithm to identify and locate vortical structures in complex flow fields. Specifically, the proposed approach firstly chooses an objective, physically based metric that describes the vortex-like behavior of intricate flow and then normalizes the metric for applying on different flow fields. After that, it performs the clustering on normalized metric to automatically determine vortex regions. Our method requires relatively few flow variables as inputs, making it suitable for vortex extraction in large-scale datasets. Moreover, this approach detects all vortices in the flow simultaneously, thereby showing great potential for automated vortex tracking. Extensive experimental results demonstrate the efficiency and accuracy of our proposed method in comparison with existing approaches.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aref H (1984) Stirring by chaotic advection. J Fluid Mech 143:1–21

    Article  MathSciNet  MATH  Google Scholar 

  • Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms. Society for Industrial and Applied Mathematics, pp 1027–1035

  • Bi C, Yuan Y, Zhang J, Shi Y, Xiang Y, Wang Y, Zhang R (2018) Dynamic mode decomposition based video shot detection. IEEE Access 6:21397–21407

    Article  Google Scholar 

  • Bi C, Fu B, Chen J, Zhao Y, Yang L, Duan Y, Shi Y (2019a) Machine learning based fast multi-layer liquefaction disaster assessment. World Wide Web, pp 1–16

  • Bi C, Yang L, Duan Y, Shi Y (2019b) A survey on visualization of tensor field. J Vis 22(3):641–660

    Article  Google Scholar 

  • Bin T, Yi L (2018) CNN-based flow field feature visualization method. Int J Perform Eng 14(3):434

    Google Scholar 

  • Biswas A, Thompson D, He W, Deng Q, Chen C-M, Shen H-W, Machiraju R, Rangarajan A (2015) An uncertainty-driven approach to vortex analysis using oracle consensus and spatial proximity. In: IEEE Pacific visualization symposium. IEEE Computer Society, Los Alamitos, pp 1–8. https://doi.org/10.1109/VISUAL.1998.745333

  • Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat Theory Methods 3(1):1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Chakraborty P, Balachandar S, Adrian RJ (2005) On the relationships between local vortex identification schemes. J Fluid Mech 535:189–214

    Article  MathSciNet  MATH  Google Scholar 

  • Chong MS, Perry AE, Cantwell BJ (1990) A general classification of three-dimensional flow fields. Phys Fluids A 2(5):765–777. https://doi.org/10.1063/1.857730

    Article  MathSciNet  Google Scholar 

  • Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 2:224–227

    Article  Google Scholar 

  • Deng L, Wang Y, Liu Y, Wang F, Li S, Liu J (2019) A CNN-based vortex identification method. J Vis 22(1):65–78

    Article  Google Scholar 

  • Epps B (2017) Review of vortex identification methods. In: 55th AIAA aerospace sciences meeting, p 0989

  • Franz K, Roscher R, Milioto A, Wenzel S, Kusche J (2018) Ocean eddy identification and tracking using neural networks. In: IGARSS 2018–2018 IEEE international geoscience and remote sensing symposium. IEEE, pp 6887–6890

  • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  MathSciNet  MATH  Google Scholar 

  • Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580–587

  • Günther T, Theisel H (2018) The state of the art in vortex extraction. Comput Graph Forum 37:149–173

    Article  Google Scholar 

  • Günther T, Schulze M, Theisel H (2016) Rotation invariant vortices for flow visualization. IEEE Trans Visual Comput Graph 22(1):817–826

    Article  Google Scholar 

  • Hadjighasem A, Karrasch D, Teramoto H, Haller G (2016) Spectral-clustering approach to Lagrangian vortex detection. Phys Rev E 93(6):063107

    Article  Google Scholar 

  • Haller G, Beron-Vera FJ (2013) Coherent Lagrangian vortices: the black holes of turbulence. J Fluid Mech 731:R4-1–R4-10

    Article  MATH  Google Scholar 

  • Haller G, Hadjighasem A, Farazmand M, Huhn F (2015) Defining coherent vortices objectively from the vorticity. J Fluid Mech 795(7):136–173. https://doi.org/10.1017/jfm.2016.151

    Article  MathSciNet  MATH  Google Scholar 

  • Hunt JCR (1987) Vorticity and vortex dynamics in complex turbulent flows. Trans Can Soc Mech Eng 11(1):21–35. https://doi.org/10.1139/tcsme-1987-0004

    Article  Google Scholar 

  • Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv (CSUR) 31(3):264–323

    Article  Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285(1):69–94. https://doi.org/10.1017/S0022112095000462

    Article  MathSciNet  MATH  Google Scholar 

  • Kim B, Günther T (2019) Robust reference frame extraction from unsteady 2d vector fields with convolutional neural networks. arXiv preprint arXiv:1903.10255

  • Kolář V (2007) Vortex identification: new requirements and limitations. Int J Heat Fluid Flow 28(4):638–652

    Article  Google Scholar 

  • Kuhn A, Lehmann DJ, Gasteiger R, Neugebauer M, Preim B, Theisel H (2011) A clustering-based visualization technique to emphasize meaningful regions of vector fields. In: VMV, pp 191–198

  • Lguensat R, Sun M, Fablet R, Tandeo P, Mason E, Chen G (2018) EddyNet: a deep neural network for pixel-wise classification of oceanic eddies. In: IGARSS 2018–2018 IEEE international geoscience and remote sensing symposium. IEEE, pp 1764–1767

  • Liu CQ, Wang YQ, Yang Y, Duan ZW (2016) New omega vortex identification method. Sci China Phys Mech Astron 59(8):684–711. https://doi.org/10.1007/s11433-016-0022-6

    Article  Google Scholar 

  • Ma T, Bollt EM (2014) Differential geometry perspective of shape coherence and curvature evolution by finite-time nonhyperbolic splitting. SIAM J Appl Dyn Syst 13(3):1106–1136

    Article  MathSciNet  MATH  Google Scholar 

  • Maries A, Luciani T, Pisciuneri PH, Nik MB, Yilmaz SL, Givi P, Marai GE (2015) A clustering method for identifying regions of interest in turbulent combustion tensor fields. In: Visualization and processing of higher order descriptors for multi-valued data. Springer, pp 323–338

  • McCallum A, Nigam K, Ungar LH (2000) Efficient clustering of high-dimensional data sets with application to reference matching. In: Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining. Citeseer, pp 169–178

  • McKenzie A, Lombeyda S, Desbrun M (2005) Vector field analysis and visualization through variational clustering. https://doi.org/10.2312/VisSym/EuroVis05/029-035

  • Oeltze-Jafra S, Cebral JR, Janiga G, Preim B (2016) Cluster analysis of vortical flow in simulations of cerebral aneurysm hemodynamics. IEEE Trans Vis Comput Graph 22(1):757–766

    Article  Google Scholar 

  • Padmesh K, Ferrari S, Hu Y, Martinuzzi RJ (2017) Clustering-based threshold estimation for vortex extraction and visualization. In: 2017 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, pp 677–682

  • Pratt J, Busse A, Mueller W-C, Chapman S, Watkins N (2014) Anomalous dispersion of Lagrangian particles in local regions of turbulent flows revealed by convex hull analysis. arXiv preprint arXiv:1408.5706

  • Rajendran V, Kelly KY, Leonardi E, Menzies K (2018) Vortex detection on unsteady CFD simulations using recurrent neural networks. In: 2018 Fluid dynamics conference, p 3724

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  MATH  Google Scholar 

  • Sadarjoen A, Post FH, Ma B, Banks DC, Pagendarm HG (2002) Selective visualization of vortices in hydrodynamic flows. In: Proceedings of visualization. IEEE Computer Society, Los Alamitos, pp 419–422. https://doi.org/10.1109/VISUAL.1998.745333

  • Sasaki Y et al (2007) The truth of the f-measure. Teach Tutor Mater 1(5):1–5

    Google Scholar 

  • Schafhitzel T, Vollrath JE, Gois JP, Weiskopf D, Castelo A, Ertl T (2008) Topology-preserving \(\lambda \)2-based vortex core line detection for flow visualization. Comput Graph Forum 27:1023–1030

    Article  Google Scholar 

  • Serra M, Haller G (2016) Objective Eulerian coherent structures. Chaos Interdiscip J Nonlinear Sci 26(5):95–105. https://doi.org/10.1063/1.4951720

    Article  MathSciNet  MATH  Google Scholar 

  • Serra M, Haller G (2017a) Efficient computation of null geodesics with applications to coherent vortex detection. Proc R Soc A Math Phys Eng Sci 473(2199):20160807

    MathSciNet  MATH  Google Scholar 

  • Serra M, Haller G (2017b) Forecasting long-lived Lagrangian vortices from their objective Eulerian footprints. J Fluid Mech 813:436–457

    Article  MathSciNet  MATH  Google Scholar 

  • Ströfer CM, Wu J-L, Xiao H, Paterson E (2019) Data-driven, physics-based feature extraction from fluid flow fields using convolutional neural networks. Commun Comput Phys 25:625–650

    Article  MathSciNet  Google Scholar 

  • Truesdell C, Noll W (2004) The non-linear field theories of mechanics. Springer, Berlin, pp 1–579

    Book  MATH  Google Scholar 

  • Wu JZ, Xiong AK, Yang YT (2005) Axial stretching and vortex definition. Phys Fluids 17(3):69–78. https://doi.org/10.1063/1.1863284

    Article  MathSciNet  MATH  Google Scholar 

  • Yang L, Wang B, Zhang R, Zhou H, Wang R (2017) Analysis on location accuracy for the binocular stereo vision system. IEEE Photon J 10(1):1–16

    Google Scholar 

  • Zhang L, Deng Q, Machiraju R, Rangarajan A, Thompson D, Walters DK, Shen H (2014) Boosting techniques for physics-based vortex detection. Comput Graph Forum 33:1–12. https://doi.org/10.1111/cgf.12275

    Article  Google Scholar 

  • Zhou J, Adrian RJ, Balachandar S, Kendall T (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China (# 2016YFB0200701) and the National Natural Science Foundation of China (# 61806205, # 91530324 and # 91430218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Wang, Y., Chen, C. et al. A clustering-based approach to vortex extraction. J Vis 23, 459–474 (2020). https://doi.org/10.1007/s12650-020-00636-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-020-00636-z

Keywords

Navigation