Skip to main content
Log in

Deep Boltzmann machine based condition prediction for smart manufacturing

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Modern manufacturing systems are increasingly equipped with sensors and communication capabilities, and data-driven intelligence is gaining more popularity to analyze big manufacturing data. This paper presents a new deep neural network model based on Gaussian–Bernoulli deep Boltzmann machine (GDBM) for optimized condition prognosis. GDBM firstly uses Gaussian neurons to normalize the sequential input. Then, Extremum Disturbed and Simple Particle Swarm Optimization (tsPSO) method is introduced to optimize the model hyperparameters. Finally, a hybrid modified Liu–Storey conjugate gradient (MLSCG) algorithm is utilized to get a better rate of convergence, which makes the prognosis process being more computational efficient. Experimental study is conducted on condition prediction of a compressor in field, and the experimental results have shown that the presented model is able to obtain better performance over conventional data driven approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bajaber F, Awan I (2010) Energy efficient clustering protocol to enhance lifetime of wireless sensor network. J Ambient Intell Humaniz Comput 1(4):239–248

    Article  Google Scholar 

  • Camacho D, Novais P (2017) Innovations and practical applications of intelligent systems in ambient intelligence and humanized computing. J Ambient Intell Humaniz Comput 8:155–156

    Article  Google Scholar 

  • Cao LJ, Tay FEH (2003) Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans Neural Netw 14(6):1506–1518

    Article  Google Scholar 

  • Cho KH, Raiko T, Ilin A (2013) Gaussian–Bernoulli deep Boltzmann machine. In: IEEE international joint conference on neural networks, pp 1–7

  • Gao R, Wang L, Teti R, Dornfeld D, Kumara S, Mori M, Helu M (2015) Cloud-enabled prognosis for manufacturing. Cirp Ann Manuf Technol 64(2):749–772

    Article  Google Scholar 

  • Hager WW, Zhang H (2006) A survey of nonlinear conjugate gradient methods. Pac J Optim 2(1):35–58

    MathSciNet  MATH  Google Scholar 

  • Helu M, Libes D, Lubell J, Lyons K, Morris K (2016) Enabling smart manufacturing technologies for decision-making support. In: AMSE proceedings of the ASME international design engineering technical conferences and computers and information in engineering conference, pp 1–10

  • Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  MathSciNet  MATH  Google Scholar 

  • Hu T, Li P, Zhang C et al (2013) Design and application of a real-time industrial ethernet protocol under Linux using RTAI. Int J Comput Integr Manuf 26(5):429–439

    Article  Google Scholar 

  • Islam MMM, Kim JM (2017) Time–frequency envelope analysis-based sub-band selection and probabilistic support vector machines for multi-fault diagnosis of low-speed bearings. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0585-2

    Google Scholar 

  • Ji S, Hu T, Zhang C, Sun S (2012) A parametric hardware fine acceleration/deceleration algorithm and its implementation. Int J Adv Manuf Technol 63(9–12):1109–1115

    Article  Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: proceedings of the IEEE international conference on neural networks, pp 1942–1948

  • Keronen S, Cho K, Raiko T et al (2013) Gaussian–Bernoulli restricted Boltzmann machines and automatic feature extraction for noise robust missing data mask estimation. In: Proceedings of 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, pp 6729–3733. https://doi.org/10.1109/ICASSP.2013.6638964

  • Kusiak A (2017) Smart manufacturing must embrace big data. Nature 544(7648):23–25

    Article  Google Scholar 

  • Le Roux N, Bengio Y (2008) Representational power of restricted Boltzmann machines and deep belief networks. Neural Comput 20(6):1631–1649

    Article  MathSciNet  MATH  Google Scholar 

  • Lee H, Grosse R, Ranganath R, Ng AY (2009) Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: ACM international conference on machine learning, pp 609–616

  • Li H, Luo Y, Huang J et al (2013) New acoustic monitoring method using cross-correlation of primary frequency spectrum. J Ambient Intell Humaniz Comput 4(3):293–301

    Article  Google Scholar 

  • Li C, Senchez R, Zurita G, Cerrada M, Cabrera D, Vásquez R (2015) Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis. Neurocomputing 168:119–127

    Article  Google Scholar 

  • Maachou A, Malti R, Melchior P, Battaglia JL, Oustaloup A, Hay B (2011) Application of fractional Volterra series for the identification of thermal diffusion in an ARMCO iron sample subject to large temperature variations. IFAC Proc Vol 44(1):5621–5626

    Article  Google Scholar 

  • Meng JD, DU X (2012) Global convergence of a modified LS conjugate gradient method with an Armijo-type line search. J Chongqing Norm Univ (Nat Sci) 6:003

    MATH  Google Scholar 

  • Peng Y, Dong M, Zuo MJ (2010) Current status of machine prognostics in condition-based maintenance: a review. Int J Adv Manuf Technol 50:297–313

    Article  Google Scholar 

  • Rigatos G, Siano P, Zervos N (2013) An approach to fault diagnosis of nonlinear systems using neural networks with invariance to Fourier transform. J Ambient Intell Humaniz Comput 4(6):621–639

    Article  Google Scholar 

  • Sorjamaa A, Hao J, Reyhani N, Ji Y, Lendasse A (2007) Methodology for long-term prediction of time series. Neurocomputing 70(16–18):2861–2869

    Article  Google Scholar 

  • Srivastava N, Salakhutdinov RR, Hinton GE (2013) Modeling documents with deep boltzmann machines. arXiv:1309.6865

  • Suk HI, Lee SW, Shen D (2014) Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 101:569–582

    Article  Google Scholar 

  • Tamilselvan P, Wang P (2013) Failure diagnosis using deep belief learning based health state classification. Reliab Eng Syst Saf 115:124–135

    Article  Google Scholar 

  • Tao F, Qi Q (2017) New IT driven service-oriented smart manufacturing: framework and characteristics. IEEE Trans Syst Man Cybern Syst 99:1–11

    Google Scholar 

  • Tao F, Qi Q, Liu A, Qi Q, Kusiak A (2018) Data-driven smart manufacturing. J Manuf Syst. https://doi.org/10.1016/j.jmsy.2018.01.006

    Google Scholar 

  • Telgarsky M (2015) Representation benefits of deep feedforward networks. arXiv:1509.08101

  • Teti R, Kumara S (1997) Intelligent computing methods for manufacturing systems. Cirp Ann Manuf Technol 46(2):629–652

    Article  Google Scholar 

  • Tonshoff HK, Wulfsberg JP, Kals HJJ, Konig W, van Luttervelt CA (1988) Development and trends in monitoring and control of machining process. CIRP Ann Manuf Technol 37(2):611–622

    Article  Google Scholar 

  • Wang P, Gao RX, Fan Z (2015) Cloud computing for cloud manufacturing: benefits and limitations. J Manuf Sci Eng 137:1–10

    Google Scholar 

  • Wang J, Zhang L, Duan L, Gao RX (2017) A new paradigm of cloud-based predictive maintenance for intelligent manufacturing. J Intell Manuf 28(5):1125–1137

    Article  Google Scholar 

  • Wang J, Ma Y, Zhang L, Gao RX, Wu D (2018) Deep learning for smart manufacturing: methods and applications. J Manuf Syst. https://doi.org/10.1016/j.jmsy.2018.01.003

    Google Scholar 

  • Wuest T, Weimer D, Irgens C, Klaus DT (2016) Machine learning in manufacturing: advantages, challenges, and applications. Prod Manuf Res 4(1):23–45

    Google Scholar 

  • Yang BS, Oh MS, Tan ACC (2008) Machine condition prognosis based on regression trees and one-step-ahead prediction. Mech Syst Signal Process 22(5):1179–1193

    Article  Google Scholar 

  • Yuan M, Tang H, Li H (2014) Real-time keypoint recognition using restricted Boltzmann machine. IEEE Trans Neural Netw Learn Syst 25(11):2119–2126

    Article  Google Scholar 

  • Zhang CY, Chen CLP, Gan M et al (2015) Predictive deep Boltzmann machine for multiperiod wind speed forecasting. IEEE Trans Sustain Energy 6(4):1416–1425

    Article  Google Scholar 

  • Zhang N, Ding S, Zhang J, Xue Y (2018) An overview on restricted Boltzmann machines. Neurocomputing 275:1186–1199

    Article  Google Scholar 

Download references

Acknowledgements

This research acknowledges the financial support provided by National Key Research and Development Program of China (No. 2016YFC0802103), National Science Foundation of China (No. 51504274) and Science Foundation of China University of Petroleum (Beijing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuguang Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, K., Wang, Y. et al. Deep Boltzmann machine based condition prediction for smart manufacturing. J Ambient Intell Human Comput 10, 851–861 (2019). https://doi.org/10.1007/s12652-018-0794-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-018-0794-3

Keywords

Navigation