Skip to main content
Log in

Reliability evaluation method for warm standby embryonic cellular array

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

In this paper, a reliability evaluation method for warm standby embryonic cellular array, based on k-out-of-n warm standby system reliability model and non-homogeneous continuous time Markov model, is proposed in order to evaluate the reliability more accurately. In reliability evaluation process, spare cells are in warm standby mode, and embryonic cell fault detection coverage and fault self-repairing success rate are considered. Experimental results show that the proposed reliability evaluation method can evaluate the reliability of embryonic cellular array effectively and improve its accuracy. Based on the proposed reliability evaluation method, the effects of parameters change on embryonic cellular array reliability are researched. By improving embryonic cell fault detection coverage and fault self-repairing success rate, and reducing embryonic cell failure rate, the reliability can be improved effectively. The higher the fault detection coverage and fault self-repairing success rate, the larger the growth rate of reliability. In addition, by increasing the scale of embryonic cellular array, the reliability increases to the maximum first, then it will decrease continuously. The reliability variation law can not only provide theoretical guidance for embryonic cellular array optimization design, but also point out the direction for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Amari SV, Pham H, Dill G (2004) Optimal design of k-out-of-n: G subsystems subjected to imperfect fault-coverage. IEEE Trans Reliab 53(4):567–575. doi:https://doi.org/10.1109/TR.2004.837703

    Article  Google Scholar 

  • Amari SV, Dill G (2010) Redundancy optimization problem with warm-standby redundancy. In: 2010 Proceedings-annual reliability and maintainability symposium (RAMS), pp 1–6. doi: https://doi.org/10.1109/RAMS.2010.5448068

  • Amari SV, Pham H, Misra RB (2012) Reliability Characteristics of k-out-of-n Warm Standby Systems. IEEE Trans Reliab 61(4):1007–1018. doi:https://doi.org/10.1109/TR.2012.2220891

    Article  Google Scholar 

  • Akhtar S (1994) Reliability of k-out-of-n: G systems with imperfect fault-coverage. IEEE Trans Reliab 43(1):101–106. doi:https://doi.org/10.1109/24.285121

    Article  Google Scholar 

  • Aven T, Jensen U (1999) Stochastic models in reliability. Springer, New York

    Book  Google Scholar 

  • Cao X, Hu L, Li Z (2019) Reliability analysis of discrete time series-parallel systems with uncertain parameters. J Ambient Intell Humaniz Comput 10(7):2657–2668. doi:https://doi.org/10.1007/s12652-018-0952-7

    Article  Google Scholar 

  • De Garis H (1991) Genetic programming: artificial nervous systems, artificial embryos and embryological electronics. In: Proceeding of the 1 st Workshop on parallel problem solving from nature, pp 117–123. doi:https://doi.org/10.1007/BFb0029741

  • De Garis H (1993) Evolvable hardware: genetic programming of a Darwin Machine. In: Albrecht RF, Reeves CR, Steele NC (eds) Artificial Neural Nets and Genetic Algorithms. Springer, Vienna, pp 441–449. doi:https://doi.org/10.1007/978-3-7091-7533-0_64

    Chapter  Google Scholar 

  • De Falco M, Mastrandrea N, Rarità L (2017) A queueing networks-based model for supply systems. In: International Conference on optimization and decision science: methodologies and applications, pp 375–383. doi: https://doi.org/10.1007/978-3-319-67308-0_38

  • Gaeta M, Rarità L (2013) A stochastic approach for supply systems. In: Proceeding of 25th European modeling and simulation symposium, pp 401–409

  • Gaeta M, Orciuoli F, Rarità L, Tomasiello S (2017) Fitted Q-iteration and functional networks for ubiquitous recommender systems. Soft Comput 21(23):7067–7075. doi:https://doi.org/10.1007/s00500-016-2248-1

    Article  Google Scholar 

  • Islam N, Azim A (2020) A situation-aware task model for adaptive real-time systems. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-01705-9

    Article  Google Scholar 

  • Li X, Yan R, Zuo MJ (2009) Evaluating a warm standby system with components having proportional hazard rates. Operations Research Letters 37:56–60. doi:https://doi.org/10.1016/j.orl.2008.09.004

    Article  MathSciNet  MATH  Google Scholar 

  • Lin Y, Luo WJ, Qian H, Wang XF (2007) Analysis of optimization design in n×n array embryonic system applications. J Univ Sci Technol China 37(2):171–176 (Chinese)

    Google Scholar 

  • Liu Y, Huang HZ (2010) Optimal replacement policy for multi-state system under imperfect maintenance. IEEE Trans Reliab 59(3):483–495. doi:https://doi.org/10.1109/TR.2010.2051242

    Article  Google Scholar 

  • Liu YW, Kapur KC (2016) Customer’s cumulative experience measures for reliability of non-repairable aging multi-state systems. Qual Technol Quant Manag 4(2):225–234. https://doi.org/10.1080/16843703.2007.11673147

    Article  MathSciNet  Google Scholar 

  • Kumaresan K, Ganeshkumar P (2020) Software reliability prediction model with realistic assumption using time series (S)ARIMA model. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-01912-4

    Article  Google Scholar 

  • Misra KB (1992) Reliability analysis and prediction, a methodology oriented treatment. Elsevier Science, Amsterdam

    MATH  Google Scholar 

  • Mange D, Goeke M, Madon D, Stauffer A, Tempesti G, Durand S, Marchal P, Nussbaun P (1996) Embryonics: a new family of coarse-grained field-programmable gate array with self-repair and self-reproducing properties. In: Proceeding of 1996 IEEE International Symposium on circuits and systems, pp 25–28. doi: https://doi.org/10.1109/ISCAS.1996.541892

  • Mange D, Sanchez E, Stauffer A, Tempesti G, Marchal P, Piguet C (1998) Embryonics: a new methodology for designing field-programmable gate arrays with self-repair and self-replicating properties. IEEE Trans Very Large Scale Integr VLSI Syst 6(3):387–399. doi:https://doi.org/10.1109/92.711310

    Article  Google Scholar 

  • Ortega C, Tyrrell A (1997) Biologically inspired reconfigurable hardware for dependable applications. In: IEE Half-Day Colloquium on hardware systems for dependable applications, pp 3/1–3/4. doi:https://doi.org/10.1049/ic:19971138

  • Ortega C, Tyrrell A (1999a) Self-repairing multicellular hardware: a reliability analysis. In: Floreano D, Nicoud JD, Mondada F (eds) Advances in Artificial Life. ECAL 1999. Lecture Notes in Computer Science, vol 1674. Springer, pp 442–446

  • Ortega C, Tyrrell A (1999b) Reliability analysis in self-repairing embryonic systems. In: Proceedings of the First NASA/DoD Workshop on evolvable hardware, pp 120–128. https://doi.org/10.1109/EH.1999.785443

  • Ortega C, Tyrrell A (1999c) Reliability analysis of self-repairing bio-inspired cellular hardware. In: IEE Half-day Colloquium on evolutionary hardware systems, pp 2/1–2/5. https://doi.org/10.1049/ic:19990179

  • Ortega-Sanchez C (2000) Embryonics: a bio-inspired fault-tolerant multicellular system. Dissertation, The University of York

  • Ortega-Sanchez C, Tyrrell A, Mange D, Stauffer A, Tempesti G (2000a) Reliability analysis of a self-repairing embryonic machine. In: 26th Euromicro Conference, workshop on digital system design, pp 356–361

  • Ortega-Sanchez C, Mange D, Smith S, Tyrrell A (2000b) Embryonics: a bio-inspired cellular architecture with fault-tolerant properties. Genet Progr Evol Mach 1(3):187–215. https://doi.org/10.1023/A:1010080629099

    Article  MATH  Google Scholar 

  • Peng JY, He P (2002) Reliability of warm standby repairable system under two kinds of switch modes. J Southw Jiao Tong Univ 38(3):253–257 (Chinese)

    Google Scholar 

  • Prodan L, Udrescu M, Vladutiu M (2005) Survivability of embryonic memories: analysis and design principles. In: 2005 NASA/DoD Conference of evolution hardware (EH’05), pp 280–289. doi: https://doi.org/10.1109/EH.2005.44

  • She JY, Pecht MG (1992) Reliability of a k-out-of-n warm-standby system. IEEE Trans Reliab 41(1):72–75. doi:https://doi.org/10.1109/24.126674

    Article  MATH  Google Scholar 

  • Sheu SH, Zhang ZG (2013) An optimal age replacement policy for multi-state systems. IEEE Trans Reliab 62(3):722–735. doi:https://doi.org/10.1109/TR.2013.2270427

    Article  Google Scholar 

  • Wang T, Cai JY, Meng YF, Liu XP, Pan G (2017) Research on the configuration of idle cells in embryonics electronic cell array. Acta Aeronaut Astronaut Sin 38(4):320266 (Chinese)

    Google Scholar 

  • Wang H, Wang Y (2018) Maximizing reliability and performance with reliability-driven task scheduling in heterogeneous distributed computing systems. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-018-0926-9

    Article  Google Scholar 

  • Wang T, Cai JY, Meng YF, Zhu S (2018a) Reliability analysis of bus-based embryonic array based on multi-state system. J Beijing Aeronaut Astronaut 44(3):593–604 (Chinese)

    Google Scholar 

  • Wang T, Cai JY, Meng YF, Zhu S (2018b) Mathematical description method for typical embryonic electronic system structure and performance. Acta Armamentarii 39(7):1340–1351 (Chinese)

    Google Scholar 

  • Wang T, Cai JY, Meng YF, Meng FQ, Zhu S (2018c) Idle cells optimum selection method for bus-based embryonics electronic cell array. Acta Electr Sin 46(6):1461–1467 (Chinese)

    Google Scholar 

  • Wang T, Cai JY, Zhang MG, Meng YF, Zhu S (2018d) Optimal selection of cell number of bus-based embryonic electronic system based on integer nonlinear programming model. Acta Armamentarii 39(6):1132–1143 (Chinese)

    Google Scholar 

  • Wang T, Cai JY, Meng YF, Zhu S (2019) Embryonic array configuration optimization method based on reliability and hardware consumption. Chin J Aeronaut 32(3):639–652. doi:https://doi.org/10.1016/j.cja.2018.08.018

    Article  Google Scholar 

  • Yao X, Higuchi T (1999) Promises and challenges of evolvable hardware. IEEE Trans Syst Man Cybern Part C 29(1):87–97. https://doi.org/10.1109/5326.740672

    Article  Google Scholar 

  • Zhang Z, Wang YR (2013) Guidelines to fault-tolerant strategy selection in embryonics hardware based on reliability analysis. Syst Eng Theory Pract 33(1):236–242 ((Chinese))

    Google Scholar 

  • Zhang Z, Wang YR (2014a) Method to self-repair reconfiguration strategy selection of embryonic cellular array on reliability analysis. In: 2014 NASA/ESA Conference on adaptive hardware and systems (AHS), pp 225–232. doi: https://doi.org/10.1109/AHS.2014.6880181

  • Zhang Z, Wang YR (2014b) Method to reliability improving of chip self-healing hardware by array configuration reformation. Acta Aeronaut Astronaut Sin 35(12):3392–3402 (Chinese)

    Google Scholar 

  • Zhang Z, Wang YR (2016) Cell granularity optimization method of embryonics hardware in application design process. Acta Aeronaut Astronaut Sin 37(11):3502–3511 (Chinese)

    Google Scholar 

  • Zhu S, Cai JY, Meng YF, Pang G (2016a) Gene backup number selection method for embryonics cell. J Beijing Univ Aeronaut Astronaut 42(2):328–336 (Chinese)

    Google Scholar 

  • Zhu S, Cai JY, Meng YF (2016b) Partial-DNA cyclic memory for bio-inspired electronic cell. Genet Program Evolvable Mach 17(2):83–117

    Article  Google Scholar 

  • Zhu S, Cai JY, Meng YF, Li DY, Pan G (2016c) Evaluation of target circuit realized on embryonics array with faulty cells. Acta Armamentarii 37(11):2120–2127 (Chinese)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 61601495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyan Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Cai, J., Meng, Y. et al. Reliability evaluation method for warm standby embryonic cellular array. J Ambient Intell Human Comput 12, 617–634 (2021). https://doi.org/10.1007/s12652-020-02044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02044-5

Keywords

Navigation