Skip to main content
Log in

Consistency-preserving attribute reduction in fuzzy rough set framework

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Attribute reduction (feature selection) has become an important challenge in areas of pattern recognition, machine learning, data mining and knowledge discovery. Based on attribute reduction, one can extract fuzzy decision rules from a fuzzy decision table. As consistency is one of several criteria for evaluating the decision performance of a decision-rule set, in this paper, we devote to present a consistency-preserving attribute reduction in fuzzy rough set framework. Through constructing the membership function of an object, we first introduce a consistency measure to assess the consistencies of a fuzzy target set and a fuzzy decision table, which underlies a foundation for attribute reduction algorithm. Then, we derive two attribute significance measures based on the proposed consistency measure and design a forward greedy algorithm (ARBC) for attribute reduction from both numerical and nominal data sets. Numerical experiments show the validity of the proposed algorithm from search strategy and heuristic function in the meaning of consistency. Number of the selected features is the least for a given threshold of consistency measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beynon M (2001) Reducts within the variable precision rough sets model: a further investigation. Eur J Oper Res 134(3):592–605

    Article  MATH  Google Scholar 

  2. Bhatt RB, Gopal M (2005) On the compact computational domain of fuzzy rough sets. Pattern Recognit Lett 26:965–975

    Article  Google Scholar 

  3. Cock MD, Cornelis C, Kerre EE (2007) Fuzzy rough sets: the forgotten step. IEEE Trans Fuzzy Syst 15(1):121–130

    Article  Google Scholar 

  4. Düntsch I, Gediga G (1998) Uncertainty measures of rough set prediction. Artif Intell 106:109–137

    Article  MATH  Google Scholar 

  5. Dübois D, Prade H (1990) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17:191–209

    Article  Google Scholar 

  6. Fan SQ, Zhang WX, Xu W (2006) Fuzzy inference based on fuzzy concept lattice. Fuzzy Sets Syst 157:3177–3187

    Article  MathSciNet  MATH  Google Scholar 

  7. Feng S, Xu L (1999) Decision support for fuzzy comprehensive evaluation of urban development. Fuzzy Sets Syst 105(1):1–12

    Article  Google Scholar 

  8. Feng QR, Miao DQ, Cheng Y (2009) Hierarchical decision rules mining. Expert Syst Appl 37(3):2081–2091

    Article  Google Scholar 

  9. Greco S, Pawlak Z, Slowinski R (2004) Can Bayesian confirmation measures be useful for rough set decision rules? Eng Appl Artif Intell 17:345–361

    Article  Google Scholar 

  10. Hong TP, Wang TT, Wang SL (2007) Mining fuzzy \(\beta \)-certain and \(\beta \)-possible rules from quantitative data based on the variable precision rough-set model. Expert Syst Appl 32:223–232

    Article  Google Scholar 

  11. Hu QH, Yu DR, Xie ZX, Liu JF (2006) Fuzzy probabilistic approximation spaces and their information measures. IEEE Trans Fuzzy Syst 14(2):191–201

    Article  Google Scholar 

  12. Hu QH, Xie ZX, Yu DR (2007) Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognit 40:3509–3521

    Article  MATH  Google Scholar 

  13. Hu XH, Cercone N (1995) Learning in relational databases: a rough set approach. Int J Comput Intell 11(2):323–338

    Google Scholar 

  14. Huysmans J, Baesens B, Vanthienen J (2007) A new approach for measuring rule set consistency. Data Knowl Eng 63(1):167–182

    Article  Google Scholar 

  15. Jensen R, Shen Q (2007) Fuzzy-rough sets assisted attribute selection. IEEE Trans Fuzzy Syst 17(1):73–89

    Article  Google Scholar 

  16. Jensen R, Shen Q (2004) Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Trans Knowl Data Eng 16(12):1457–1471

    Article  Google Scholar 

  17. Kryszkiewicz M (1998) Rough set approach to incomplete information systems. Inf Sci 112:39–49

    Article  MathSciNet  MATH  Google Scholar 

  18. Kryszkiewicz M (1999) Rule in incomplete information systems. Inf Sci 113:271–292

    Article  MathSciNet  MATH  Google Scholar 

  19. Kwak N, Choi CH (2002) Input feature selection for classification problems. IEEE Trans Neural Netw 13:143–159

    Article  Google Scholar 

  20. Li DY, Zhang B, Leung Y (2004) On knowledge reduction in inconsistent decision information systems. Int J Uncertain Fuzziness Knowl Based Syst 12(5):651–672

    Article  MathSciNet  MATH  Google Scholar 

  21. Liang JY, Qian YH, Chu CY, Li DY, Wang JH (2005) Rough set approximation based on dynamic granulation. Lect Notes Comput Sci 3641:701–708

    Article  Google Scholar 

  22. Liang JY, Dang CY, Chin KS, Yam Richard CM (2002) A new method for measuring uncertainty and fuzziness in rough set theory. Int J Gen Syst 31(4):331–342

    Article  MathSciNet  MATH  Google Scholar 

  23. Liang JY, Shi ZZ, Li DY, Wierman MJ (2006) The information entropy, rough entropy and knowledge granulation in incomplete information system. Int J Gen Syst 35(6):641–654

    Article  MathSciNet  MATH  Google Scholar 

  24. Mi JS, Wu WZ, Zhang WX (2004) Approaches to knowledge reduction based on variable precision rough set model. Inf Sci 159:255–272

    Article  MathSciNet  MATH  Google Scholar 

  25. Mi JS, Wu WZ, Zhang WX (2003) Comparative studies of knowledge reductions in inconsistent systems. Fuzzy Syst Math 17(3):54–60

    MathSciNet  Google Scholar 

  26. Pavlenko T (2003) On feature selection, curse-of-dimensionality and error probability in discriminant analysis. J Stat Plan Inference 115:565–584

    Article  MathSciNet  MATH  Google Scholar 

  27. Pawlak Z (ed) (1991) Rough Sets: theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  28. Qian YH, Liang JY (2006) Rough set model based on multi-granulations. In: Proceedings of 5th IEEE Conference on Cognitive Informatics. China I, pp 297–304

  29. Qian YH, Liang JY, Dang CY (2010) Incomplete multi-granulation rough set. IEEE Trans Syst Man Cybern Part A 40(2):420–431

    Article  Google Scholar 

  30. Qian YH, Dang CY, Liang JY, Zhang HY, Ma JM (2008) On the evaluation of the decision performance of an incomplete decision table. Data Knowl Eng 65:373–400

    Article  Google Scholar 

  31. Qian YH, Liang JY, Li DY, Zhang HY, Dang CY (2008) Measures for evaluating the decision performance of a decision table in rough set theory. Inf Sci 178:181–202

    Article  MATH  Google Scholar 

  32. Qian YH, Liang JY, Dang CY (2008) Converse approximation and rule extracting from decision tables in rough set theory. Comput Math Appl 55:1754–1765

    Article  MathSciNet  MATH  Google Scholar 

  33. Qian YH, Liang JY, Dang CY (2008) Consistency measure, inclusion degree and fuzzy measure in decision tables. Fuzzy Sets Syst 159:2353–2377

    Article  MathSciNet  MATH  Google Scholar 

  34. Qiu GF, Li HZ, Xu LD, Zhang WX (2003) A knowledge processing method for intelligent systems based on inclusion degree. Expert Syst 20(4):187–195

    Article  Google Scholar 

  35. Shao MW, Liu M, Zhang WX (2007) Set approximations in fuzzy formal concept analysis. Fuzzy Sets Syst 158:2627–2640

    Article  MathSciNet  MATH  Google Scholar 

  36. Skowron A (1995) extracting laws from decision tables: a rough set approach. Comput Intell 11:371–388

    Article  MathSciNet  Google Scholar 

  37. Slezak D, Ziarko W (2005) The investigation of the Bayesian rough set model. Int J Approx Reason 40:81–91

    Article  MathSciNet  MATH  Google Scholar 

  38. Slezak D (2002) Approximate entropy reducts. Found Inf 53(3–4):365–390

    MathSciNet  Google Scholar 

  39. Swiniarski RW, Skowron A (2003) Rough set methods in feature selection and recognition. Pattern Recognit Lett 24:833–849

    Article  MATH  Google Scholar 

  40. Wang XZ, Zhai JH, Lu SX (2008) Induction of multiple fuzzy decision trees based on rough set technique. Inf Sci 178(16):3188–3202

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang XZ, Tsand E, Zhao SY, Chen DG, Yeung D (2007) Learning fuzzy rules from fuzzy examples based on rough set techniques. Inf Sci 177(20):4493–4514

    Article  MATH  Google Scholar 

  42. Wu WZ, Zhang M, Li HZ, Mi JS (2005) Knowledge reduction in random information systems via dempster-shafer theory of evedence. Inf Sci 174:143–164

    Article  MathSciNet  MATH  Google Scholar 

  43. Wu WZ, Leung Y, Mi JS (2009) On generalized fuzzy belief functions in infinite spaces. IEEE Trans Fuzzy Syst 17(2):385–397

    Article  Google Scholar 

  44. Wu WZ, Leung Y, Mi JS (2009) Granular computing and knowledge reduction in formal contexts. IEEE Trans Knowl Data Eng 21(10):1461–1474

    Article  Google Scholar 

  45. Xu BW, Zhou YM, Lu HM (2005) An improved accuracy measure for rough sets. J Comput Syst Sci 71:163–173

    Article  MathSciNet  MATH  Google Scholar 

  46. Xu WH, Zhang WX (2007) Measuring roughness of generalized rough sets induced by a covering. Fuzzy Sets Syst 158:2443–2455

    Article  MATH  Google Scholar 

  47. Xu ZB, Liang JY, Dang CY, Chin KS (2002) Inclusion degree: a perspective on measures for rough set data analysis. Inf Sci 141:227–236

    Article  MathSciNet  MATH  Google Scholar 

  48. Yu DR, Hu QH, Wu CX (2007) Uncertainty measures on fuzzy relations and their applications. Appl Soft Comput 7:1135–1143

    Article  Google Scholar 

  49. Zhang WX, Leung Y (eds) (1996) The uncertainty reasoning principles. Xian Jiaotong University Press, China

    Google Scholar 

  50. Zhang WX, Leung Y (1996) Theory of inclusion degrees and its applications to uncertainty inferences. Soft Comput IEEE Intell Syst Inf Process, New York, pp 496–501

    Google Scholar 

  51. Zheng P, Germano R, Ariën J, Qin KY, Xu Y (2006) Interpreting and extracting fuzzy decision rules from fuzzy information systems and their inference. Inf Sci 176:1869–1897

    Article  MATH  Google Scholar 

  52. Zhu W, Wang FY (2003) Reduction and axiomization of covering generalized rough sets. Inf Sci 152:217–230

    Article  MATH  Google Scholar 

  53. Zhu W, Wang SP (2011) Matroidal approaches to generalized rough sets based on relations. J Mach Learn Cybern. doi:10.1007/s13042-011-0027-y

    Google Scholar 

  54. Ziarko W (1993) Variable precision rough set model. J Comput Syst Sci 46:39–59

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the national natural science foundation of China (No. 60903110, 60773133, 70971080), the national high technology research and development program of China (No. 2007AA01Z165), the natural science foundation of Shanxi province, China (No. 2008011038, 2009021017-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhua Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, Y., Liang, J. & Wei, W. Consistency-preserving attribute reduction in fuzzy rough set framework. Int. J. Mach. Learn. & Cyber. 4, 287–299 (2013). https://doi.org/10.1007/s13042-012-0090-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-012-0090-z

Keywords

Navigation