Skip to main content
Log in

Improved particle swarm optimization based approach for bilevel programming problem-an application on supply chain model

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Bilevel programming problem (BLPP) is a NP-hard problem and very difficult to be resolved by using the classical method. This paper attempts to develop an efficient method based on improved bilevel particle swarm optimization algorithm (IBPSO) to deal with BLPP. The improved algorithm adopts dynamic self-adapting inertia weight and Cauchy distribution to ensure global search ability and faster convergence speed of IBPSO. IBPSO employs two improved PSO as a main program and a subprogram respectively. According to the interactive iterations of two improved PSO algorithms, IBPSO can solve BLPP without some assumptions of BLPP, such as the gradient information of the objective functions, the convexity of constraint regions, and so on. Twelve bilevel problems in the literatures are employed to illustrate the performance of IBPSO and some comparisons are also given. The results demonstrate that the proposed algorithm IBPSO exhibits higher accuracy than other algorithms. Then IBPSO is adopted to solve two supply chain models proposed in this paper, and some features of the proposed bilevel model are given based on the experimental data. The results support the finding that IBPSO is effective in optimizing BLPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abad PL (2003) Optimal pricing and lot-sizing under conditions of perishability, finite production and partial backordering and lost sale. Eur J Oper Res 144(3):677–685

    Article  MATH  MathSciNet  Google Scholar 

  2. Bard JF (1991) Some properties of the bilevel linear programming. J Optim Theory Appl 68:371–378

    Article  MATH  MathSciNet  Google Scholar 

  3. Calvete HI, Galé C (2011) On linear bilevel problems with multiple objectives at the lower level. Omega 39:33–40

    Article  Google Scholar 

  4. Calvete HI, Galé C, Mateo PM (2008) A new approach for solving linear bilevel problems using genetic algorithms. Eur J Oper Res 188:14–28

    Article  MATH  Google Scholar 

  5. Clerc M, Kennedy J (2002) The particle swarm: explosion stability and convergence in a multi-dimensional complex space. IEEE Trans Evolut Comput 6(1):58–73

    Article  Google Scholar 

  6. Dewez S, Labbé M, Marcotte P, Savard G (2008) New formulations and valid inequalities for a bilevel pricing problem. Oper Res Lett 2(36):141–149

    Article  Google Scholar 

  7. Gao Y, Zhang GQ, Lu J, Wee HM (2011) Particle swarm optimization for bi-level pricing problems in supply chains. J Glob Optim 51:245–254

    Article  MATH  MathSciNet  Google Scholar 

  8. Guan YP, Liu TM (2010) Stochastic lot-sizing problem with inventory-bounds and constant order-capacities. Eur J Oper Res 3(207):1398–1409

    Article  MathSciNet  Google Scholar 

  9. Hejazia SR, Memariani A, Jahanshahloo G, Sepehri MM (2002) Linear bilevel programming solution by genetic algorithm. Comput Oper Res 29:1913–1925

    Article  MathSciNet  Google Scholar 

  10. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, Perth, 1995, pp 1942–1948

  11. Khouja M, Park S (2003) Optimal lot-sizing under continuous price decrease. Omega 31:539–545

    Article  Google Scholar 

  12. Kuo RJ, Huang CC (2009) Application of particle swarm optimization algorithm for solving bi-level linear programming problem. Comput Math Appl 58:678–685

    Article  MATH  MathSciNet  Google Scholar 

  13. Lan KM, Wen UP, Shih HS, Lee ES (2007) A hybrid neural network approach to bilevel programming problems. Appl Math Lett 20:880–884

    Article  MATH  MathSciNet  Google Scholar 

  14. Li HY, Meissner J (2011) Competition under capacitated dynamic lot-sizing with capacity acquisition. Int J Prod Econ 2(131):535–544

    Article  Google Scholar 

  15. Li MQ, Lin D, Wang SY (2010) Solving a type of biobjective bilevel programming problem using NSGA-II. Comput Math Appl 59:706–715

    Article  MATH  MathSciNet  Google Scholar 

  16. Li XY, Tian P, Min XP (2006) A hierarchical particle swarm optimization for solving bilevel programming problems. In: Lecture notes in computer science, artificial intelligence and soft computing-ICAISC 2006, vol 4029 pp 1169–1178

  17. Lin CM, Li MC, Ting AB, Lin MH (2011) A robust self-learning PID control system design for nonlinear systems using a particle swarm optimization algorithm. Int J Mach Learn Cyber 2:225–234

    Article  Google Scholar 

  18. Lu L, Qi XT (2011) Dynamic lot-sizing for multiple products with a new joint replenishment model. Eur J Oper Res 1(212):74–80

    Article  MathSciNet  Google Scholar 

  19. Lukač Z, Šorić K, Rosenzweig VV (2008) Production planning problem with sequence dependent setups as a bilevel programming problem. Eur J Oper Res 187:1504–1512

    Article  MATH  Google Scholar 

  20. Marcotte P, Savard G, Zhu DL (2009) Mathematical structure of a bilevel strategic pricing model. Eur J Oper Res 2(193):552–566

    Article  MathSciNet  Google Scholar 

  21. Rajesh J, Gupta K, Kusumakar HS, Jayaraman VK, Kulkarni BD (2003) A Tabu search based approach for solving a class of bilevel programming problems in chemical engineering. J Heuristics 9:307–319

    Article  Google Scholar 

  22. Rana S, Jasola S, Kumar R (2012) A boundary restricted adaptive particle swarm optimization for data clustering. Int J Mach Learn Cyber. doi:10.1007/s13042-012-0103-y

    Google Scholar 

  23. Sadegheih A, Drake PR (2011) A new experimental study of genetic algorithm and simulated annealing with bounded variables. Appl Artif Intell 25:927–950

    Article  Google Scholar 

  24. Sahin HK, Ciric RA (1998) A dual temperature simulated annealing approach for solving bilevel programming problem. Comput Chem Eng 23:11–25

    Article  Google Scholar 

  25. Shi Y, Eberhart R (1999) Empirical study of particle swarm optimization. In: International conference on evolutionary computation, IEEE press, Washington, USA, pp 1945–1950

  26. Shih HS, Wen UP, Lee ES, Lan KM, Hsiao HC (2004) A neural network approach to multi-objective and multilevel programming problems. Comput Math Appl 48:95–108

    Article  MATH  MathSciNet  Google Scholar 

  27. Sinha AK, Aditya HK, Tiwari MK, Chan FTS (2011) Agent oriented petroleum supply chain coordination: co-evolutionary particle swarm optimization based approach. Expert Syst Appl 38:6132–6145

    Article  Google Scholar 

  28. Stackelberg HV (1952) The Theory of the Market Economy. Oxford University Press, York

    Google Scholar 

  29. Vicente L, Savard G, Judice J (1994) Descent approaches for quadratic bilevel programming. J Optim Theory Appl 81:379–399

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang GM, Wan ZP, Wang XJ, Lv YB (2008) Genetic algorithm based on simplex method for solving linear-quadratic bilevel programming problem. Comput Math Appl 56:2550–2555

    Article  MATH  MathSciNet  Google Scholar 

  31. Wang XZ, He YL, Dong LC, Zhao HY (2011) Particle swarm optimization for determining fuzzy measures from data. Inform Sci 181(19):4230–4252

    Article  MATH  Google Scholar 

  32. Wen UP, Huang AD (1996) A simple Tabu Search method to solve the mixed-integer problem bi-level programming problem. Eur J Oper Res 88:563–571

    Article  MATH  Google Scholar 

  33. Yao X, Liu Y, Lin C (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3:82–102

    Article  Google Scholar 

  34. Yıldırmaz C, Karabatı S, Sayın S (2009) Pricing and lot-sizing decisions in a two-echelon system with transportation costs. OR Spectrum 31:629–650

    Article  MATH  Google Scholar 

  35. Zhu J, Li XP, Shen WM (2011) Effective genetic algorithm for resource-constrained project scheduling with limited preemptions. Int J Mach Learn Cyber 2:55–65

    Article  Google Scholar 

Download references

Acknowledgments

The work was partly supported by the National Natural Science Foundation of China (71071113), a Ph. D. Programs Foundation of Ministry of Education of China (20100072110011), the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaomiao Wang.

Appendix

Appendix

Problem 1:

$$ \begin{gathered} \hbox{max} \;f_{1} = - 2x_{1} + 11x_{2} \;{\text{where}}\;x_{2} \;{\text{solves}} \hfill \\ \hbox{max} \;f_{2} = - x_{1} - 3x_{2} \hfill \\ {\text{s}} . {\text{t}} .\;x_{1} - 2x_{2} \le 4,\;2x_{1} - x_{2} \le 24,\;3x_{1} + 4x_{2} \le 96,x_{1} + 7x_{2} \le 126 \hfill \\ \quad \; - 4x_{1} + 5x_{2} \le 65,\;x_{1} + 4x_{2} \ge 8,\;x_{1} \ge 0,\;x_{2} \ge 0 \hfill \\ \end{gathered} $$

Problem 2:

$$ \begin{gathered} \hbox{max} \;f_{1} = x_{2} \;{\text{where}}\;x_{2} \;{\text{solves}} \hfill \\ \hbox{max} \;f_{2} = - x_{2} \hfill \\ {\text{s}} . {\text{t}} .\; - x_{1} - 2x_{2} \le 10,\;x_{1} - 2x_{2} \le 6,\;2x_{1} - x_{2} \le 21 \hfill \\ \quad \;x_{1} + 2x_{2} \le 38,\; - x_{1} + 2x_{2} \le 18,\;x_{1} \ge 0,\;x_{2} \ge 0 \hfill \\ \end{gathered} $$

Problem 3:

$$ \begin{gathered} \hbox{max} \;f_{1} = x_{1} + 3x_{2} \;{\text{where}}\;x_{2} \;{\text{solves}} \hfill \\ \hbox{max} \;f_{2} = - x_{2} \hfill \\ {\text{s}} . {\text{t}} .\; - x_{1} + x_{2} \le 3,\;x_{1} + 2x_{2} \le 12 \hfill \\ \quad \;4x_{1} - x_{2} \le 12,\;x_{1} \ge 0,\;x_{2} \ge 0 \hfill \\ \end{gathered} $$

Problem 4:

$$ \begin{gathered} \hbox{max} \;f_{1} = 8x_{1} + 4x_{2} - 4y_{1} + 40y_{2} + 4y_{3} \;{\text{where}}\;y\;{\text{solves}} \hfill \\ \hbox{max} \;f_{2} = - x_{1} - 2x_{2} - y_{1} - y_{2} - 2y_{3} \hfill \\ {\text{s}} . {\text{t}} .\;y_{1} - y_{2} - y_{3} \ge - 1 \hfill \\ \quad \, - 2x_{1} + y_{1} - 2y_{2} + 0.5y_{3} \ge - 1 \hfill \\ \quad \, - 2x_{2} - 2y_{1} + y_{2} + 0.5y_{3} \ge - 1 \hfill \\ \quad \;x_{1} ,x_{2} ,y_{1} ,y_{2} ,y_{3} \ge 0 \hfill \\ \end{gathered} $$

Problem 5:

$$ \begin{gathered} \hbox{min} \;f_{1} = - x_{1}^{2} - 3x_{2} - 4y_{1} + y_{2}^{2} \hfill \\ {\text{s}} . {\text{t}} .\;x_{1}^{2} + 2x_{2} \le 4,\;x_{1} \ge 0,\;x_{2} \ge 0 \hfill \\ {\text{where}}\;y\;{\text{solves}} \hfill \\ \hbox{min} \;f_{2} = 2x_{1}^{2} + y_{1}^{2} - 5y_{2} \hfill \\ {\text{s}} . {\text{t}} .\;x_{1}^{2} - 2x_{1} + x_{2}^{2} - 2y_{1} + y_{2} \ge - 3 \hfill \\ \quad \;x_{2} + 3y_{1} - 4y_{2} \ge - 4,\;y_{1} \ge 0,\;y_{2} \ge 0 \hfill \\ \end{gathered} $$

Problem 6:

$$ \begin{gathered} \hbox{min} \;f_{1} = x^{2} + \left( {y - 10} \right)^{2} \hfill \\ {\text{s}} . {\text{t}} .\;x + 2y - 6 \le 0,\; - x \le 0 \hfill \\ {\text{where}}\;y\;{\text{solves}} \hfill \\ \hbox{min} \;f_{2} = x^{3} - 2y^{3} + x - 2y - x^{2} \hfill \\ {\text{s}} . {\text{t}} .\; - x + 2y - 3 \le 0,\; - y \le 0 \hfill \\ \end{gathered} $$

Problem 7:

$$ \begin{gathered} \hbox{min} \;f_{1} = \left( {x - 5} \right)^{4} + \left( {2y + 1} \right)^{4} \hfill \\ {\text{s}} . {\text{t}} .\;x + y - 4 \le 0,\; - x \le 0 \hfill \\ {\text{where}}\;y\;{\text{solves}} \hfill \\ \hbox{min} \;f_{2} = e^{ - x + y} + x^{2} + 2xy + y^{2} + 2x + 6y \hfill \\ {\text{s}} . {\text{t}} .\; - x + y - 2 \le 0,\; - y \le 0 \hfill \\ \end{gathered} $$

Problem 8:

$$ \begin{gathered} \hbox{min} \;f_{1} = \left( {x_{1} - y_{2} } \right)^{4} + \left( {y_{1} - 1} \right)^{2} + \;\left( {y_{1} - y_{2} } \right)^{2} \hfill \\ {\text{s}} . {\text{t}} .\; - x_{1} \le 0 \hfill \\ {\text{where}}\;y\;{\text{solves}} \hfill \\ \hbox{min} \;f_{2} = 2x_{1} + e^{{y_{1} }} + y_{1}^{2} + 4y_{1} + 2y_{2}^{2} - 6y_{2} \hfill \\ {\text{s}} . {\text{t}} .\;6x_{1} + 2y_{1}^{2} + e^{{y_{2} }} - 15 \le 0,\; - y_{1} \le 0,\;y_{1} - 4 \le 0 \hfill \\ \quad \;5x_{1} + y_{1}^{4} - y_{2} - 25 \le 0,\; - y_{2} \le 0,\;y_{2} - 2 \le 0 \hfill \\ \end{gathered} $$

Problem 9–12:

$$ \begin{gathered} \mathop {\hbox{min} }\limits_{x} \;f_{1} = r\left( {x_{1}^{2} + x_{2}^{2} } \right) - 3y_{1} - 4y_{2} + 0.5\left( {y_{1}^{2} + y_{2}^{2} } \right) \hfill \\ \mathop {\hbox{min} }\limits_{y} f_{2} = 0.5\left[ {y_{1} \quad y_{2} } \right]H\left[ {y_{1} \quad y_{2} } \right]^{T} - b\left( x \right)^{T} \left[ {y_{1} \quad y_{2} } \right]^{T} \hfill \\ \quad \;{\text{s}} . {\text{t}} .\; - 0.333y_{1} + y_{2} - 2 \le 0,\;y_{1} - 0.333y_{2} - 2 \le 0,\;y_{1} \ge 0,\;y_{2} \ge 0 \hfill \\ \end{gathered} $$

Problem 9:

$$ r = 0.1,\;H = \left[ {\begin{array}{*{20}c} 1 & { - 2} \\ { - 2} & 5 \\ \end{array} } \right],\;b\left( x \right) = \left[ \begin{gathered} x_{1} \hfill \\ x_{2} \hfill \\ \end{gathered} \right] $$

Problem 10:

$$ r = 0.1,\;H\;{\text{and}}\;b\left( x \right)\;{\text{are}}\;{\text{the}}\;{\text{same}}\;{\text{as}}\;{\text{in}}\;{\text{Problem}}\; 9 $$

Problem 11:

$$ r = 0.1,\;H = \left[ \begin{gathered} 1\quad 3 \hfill \\ 3\quad 10 \hfill \\ \end{gathered} \right],\;b\left( x \right) = \left[ \begin{gathered} - 1\quad 2 \hfill \\ 3\quad - 3 \hfill \\ \end{gathered} \right]\,\left[ \begin{gathered} x_{1} \hfill \\ x_{2} \hfill \\ \end{gathered} \right] $$

Problem 12:

$$ r = 0.1,\;H\;{\text{is}}\;{\text{the}}\;{\text{same}}\;{\text{as}}\;{\text{in}}\;{\text{Problem}}\; 1 1,\;b\left( x \right) = \left[ \begin{gathered} x_{1} \hfill \\ x_{2} \hfill \\ \end{gathered} \right] $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Wang, M. & Zhu, X. Improved particle swarm optimization based approach for bilevel programming problem-an application on supply chain model. Int. J. Mach. Learn. & Cyber. 5, 281–292 (2014). https://doi.org/10.1007/s13042-013-0167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-013-0167-3

Keywords

Navigation