Skip to main content
Log in

A rough set method for the unicost set covering problem

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, we aim to provide a rough set method to deal with a class of set covering problem called the unicost set covering problem, which is a well-known problem in binary optimization. Firstly, by constructing a Multi-Relation Granular Computing (GrC) model of a given unicost set covering problem, the problem can be equivalently converted to the knowledge reduction problem in rough set theory. Thus, various kinds of efficient knowledge reduction methods in rough set theory can be used to solve the unicost set covering problem. Secondly, a commonly used reduction algorithm based on information entropy is proposed to compute a local minimum of the unicost set covering problem. Finally, the feasibility and efficiency of the proposed algorithm is examined by an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balas E (1982) Class of location, distribution and scheduling problems: modeling and solution methods. Carnegie Mellon University, Design Research Center, New York

    MATH  Google Scholar 

  2. Bautista J, Pereira J (2007) A GRASP algorithm to solve the unicost set covering problem. Comput Operation Res 34(10):3162–3173

    Article  MathSciNet  MATH  Google Scholar 

  3. Bilal N, Galinier P, Guibault F (2013) A new formulation of the set covering problem for metaheuristic approaches. Hindawi Publishing Corporation, ISRN Operations Research, Volume 2013, Article ID 203032, p 10. doi:10.1155/2013/203032

  4. Caprara A, Fischetti M, Toth P (1999) A heuristic method for the set covering problem. Operat Res 47(5):730–743

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen DG, Zhao SY, Zhang L et al (2012) Sample pair selection for attribute reduction with rough set. IEEE Transac Know Data Eng 24(11):2080–2093

    Article  Google Scholar 

  6. Deng TQ, Yang CD, Wang XF (2012) A reduct derived from feature selection. Pattern Recogn Lett 33(12):1638–1646

    Article  Google Scholar 

  7. Grzymala-Busse JW (1992) LERS-a system for learning from examples based on rough sets. In: Slowinski R (ed) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Set Theory, Kluwer Academic Publishers, pp 3–18

  8. Gu SM, Wu WZ (2013) On knowledge acquisition in multi-scale decision systems. Int J Mach Learn Cybernet 4(5):477–486

    Article  Google Scholar 

  9. Hu QH, Zhang L, Zhang D et al (2011) Measuring relevance between discrete and continuous features based on neighborhood mutual information. Expert Syst Appl 38(9):10737–10750

    Article  Google Scholar 

  10. Hu XH, Cercone N (1995) Learning in relational databases: a rough set approach. Comput Intell 11(2):323–338

    Article  Google Scholar 

  11. Johnson DS, Garey MR (1979) Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman & Company, NewYork

    MATH  Google Scholar 

  12. Lan G, DePuy GW, Whitehouse GE (2007) An effective and simple heuristic for the set covering problem. Eur J Oper Res 176(3):1387–1403

    Article  MathSciNet  MATH  Google Scholar 

  13. Lang GM, Li QG, Cai MJ et al (2014) Incremental approaches to knowledge reduction based on characteristic matrices. Int J Mach Learn Cybernet. doi:10.1007/s13042-014-0315-4

    Google Scholar 

  14. Liang JY, Chin KS, Dang CY et al (2002) A new method for measuring uncertainty and fuzziness in rough set theory. Int J General Syst 31(4):331–342

    Article  MathSciNet  MATH  Google Scholar 

  15. Liang JY, Qian YH (2008) Information granules and entropy theory in information systems. Sci China Ser F Inform Sci 51(10):1427–1444

    Article  MathSciNet  MATH  Google Scholar 

  16. Liang JY, Shi ZZ (2004) The information entropy, rough entropy and knowledge granulation in rough set theory. Int J Uncertain Fuzziness Knowl Based Syst 12(1):37–46

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin TY (1988) Neighborhood systems and relational database. In: Proceedings of CSC’88

  18. Lin TY (1992) Topological and fuzzy rough sets. In: Slowinski R (ed) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory. Kluwer Academic Publishers, Boston, pp 287–304

    Chapter  Google Scholar 

  19. Lin TY (1989) Neighborhood systems and approximation in relational databases and knowledge bases. Poster Session. In: Proceedings of the Fourth International Symposium on ethodologies of Intelligent Systems, pp 75–86

  20. Lin TY (2009) Granular computing: practices, theories, and future directions. Springer, Encyclopedia on Complexity of Systems Science, pp 4339–4355

    Google Scholar 

  21. X. liu, Y.H. Qian, J.Y. Liang, A rule-extraction framework under multigranulation rough sets, Int J Mach Learn Cybernet 5 (2) (2014) 319–326

  22. Miao DQ, Zhao Y, Yao YY et al (2009) Relative reducts in consistent and inconsistent decision tables of the pawlak rough set model. Inform Sci 179(24):4140–4150

    Article  MathSciNet  MATH  Google Scholar 

  23. Min F, He HP, Qian YH, Zhu W (2011) Test-cost-sensitive attribute reduction. Inform Sci 181(22):4928–4942

    Article  Google Scholar 

  24. Pawlak Z (2004) Decision rules and dependencies. Fundam Inform 60(1):33–39

    MathSciNet  MATH  Google Scholar 

  25. Pawlak Z (1982) Rough sets. Int J Comput Inform Sci 11(5):341–356

    Article  MATH  Google Scholar 

  26. Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Kluwer Academic Publishing, Dordrecht

    Book  MATH  Google Scholar 

  27. Peters JF, Skowron A, Suraj Z (2000) An application of rough set methods in control design. Fundam Inform 43(1):269–290

    MathSciNet  MATH  Google Scholar 

  28. Qian YH, Liang JY (2008) Combination entropy and combination granulation in rough set theory. Int J Uncertain Fuzziness Knowl Based Syst 16(2):179–193

    Article  MathSciNet  MATH  Google Scholar 

  29. Qian YH, Liang JY, Pedrycz W, Dang CY (2010) Positive approximation: an accelerator for attribute reduction in rough set theory. Artif Intell 174(9–10):597–618

    Article  MathSciNet  MATH  Google Scholar 

  30. Skowron A, Rauszer C (1992) The discernibility matrices and functions in information systems. In: Slowinski R (ed) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, Kluwer, pp 331–362

    Chapter  Google Scholar 

  31. Slezak D (1996) Approximate reducts in decision tables, Research report. Institute of Computer Science, Warsaw University of Technology

  32. Slezak D (2002) Approximate entropy reducts. Fund Inform 53(3):365–390

    MathSciNet  MATH  Google Scholar 

  33. Steiglitz K, Papadimitriou CH (1982) Combinatorial optimization: algorithms and complexity. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  34. Sun YF, Wang ZT (1994) The genetic algorithm for 0–1 programming with linear constraints. In: Fogel DB (ed) Proceedings of the 1st ICEC94. Orlando, FL, pp 559–564

    Google Scholar 

  35. Sundar S, Singh A (2012) A hybrid heuristic for the set covering problem. Oper Res 12(3):345–365

    MATH  Google Scholar 

  36. Swiniarski RW, Skowron A (2003) Rough set methods in feature selection and recognition. Pattern Recogn Lett 24(6):833–849

    Article  MATH  Google Scholar 

  37. Synak P, Bazan JG, Skowron A, Peters JF (2005) Spatio-temporal approximate reasoning over complex objects. Fundam Inform 67(1):249–269

    MathSciNet  MATH  Google Scholar 

  38. Tan AH, Li JJ (2014) A kind of approximations of generalized rough set model. Int J Mach Learn Cybernet. doi:10.1007/s13042-014-0273-x

    Google Scholar 

  39. Tan AH, Li JJ, Lin GP (2015) Connections between covering-based rough sets and concept lattices. Int J Approx Reason 56:43–58

    Article  MathSciNet  MATH  Google Scholar 

  40. Toregas C, Swain R, ReVelle C, Bergman L (1971) The location of emergency service facilities. Oper Res 19(6):1363–1373

    Article  MATH  Google Scholar 

  41. Wang GY, Yu H, Yang DC (2002) Decision table reduction based on conditional information entropy. Chinese J Comput 25(7):759–766

    MathSciNet  Google Scholar 

  42. Wang GY, Zhao J, An JJ, Wu Y (2005) A comparative study of algebra viewpoint and information viewpoint in attribute reduction. Fundam Inform 68(3):289–301

    MathSciNet  MATH  Google Scholar 

  43. Wang J, Wang J (2001) Reduction algorithms based on discernibility matrix: the ordered attributes method. J Comput Sci Technol 16(6):489–504

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang XZ, Li CG, A new definition of sensitivity for RBFNN and its applications to feature reduction, Advances in Neural NetworksCISNN, (2005) Springer. Berlin Heidelberg 2005:81–86

  45. Wong SKM, Ziarko W (1985) On optimal decision rules in decision tables. Bull Polish Acad Sci 33:693–696

    MathSciNet  MATH  Google Scholar 

  46. Wu SX, Li MQ, Huang WT, Liu SF (2004) An improved heuristic algorithm of attribute reduction in rough set. J Syst Sci Inform 2(3):557–562

    Google Scholar 

  47. Wu WZ, Zhang M, Li HZ, Mi JS (2005) Knowledge reduction in random information systems via dempster-shafer theory of evidence. Inform Sci 174(3):143–164

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang XB, Song XN, Chen ZH, Yang JY (2012) On multigranulation rough sets in incomplete information system. Int J Machine Learn Cybernet 3(3):223–232

    Article  Google Scholar 

  49. Yao YY (1998) Relational interpretations of neighborhood operators and rough set approximation operators. Inform Sci 111(1):239–259

    Article  MathSciNet  MATH  Google Scholar 

  50. Yao YY (2006) Neighborhood systems and approximate retrieval. Inform Sci 176(23):3431–3452

    Article  MathSciNet  MATH  Google Scholar 

  51. Yao YY, Zhao Y (2009) Discernibility matrix simplification for constructing attribute reducts. Inform Sci 179(7):867–882

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous referees for their valuable comments and suggestions. This work is supported by grants from National Natural Science Foundation of China under Grant (Nos. 61379021, 11301367, 11061004, 61303131) and the Department of Education of Fujian Province (Nos. JA13202, JA13198, JK2013027, JK2014028, 2015J05011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingyuan Xu or Anhui Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Tan, A. & Lin, Y. A rough set method for the unicost set covering problem. Int. J. Mach. Learn. & Cyber. 8, 781–792 (2017). https://doi.org/10.1007/s13042-015-0365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-015-0365-2

Keywords

Navigation