Skip to main content
Log in

Multiple attribute group decision making based on generalized power aggregation operators under interval-valued dual hesitant fuzzy linguistic environment

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

This paper aims to investigate the type of fuzzy multiple attribute group decision making (MAGDM) where arguments being aggregated are allowed to support each other. In order to enable decision makers to express their preferences more comprehensively, we firstly put forward a hybrid tool, an interval-valued dual hesitant fuzzy linguistic set (IVDHFLS), which employs interval-valued hesitant membership and nonmembership degrees to assess linguistic terms. Basic operational laws for IVDHFLS are discussed, also a distance measure is designed to overcome irrationality in traditional methodology for hesitant fuzzy sets, i.e., artificially adding values to mismatching membership or nonmembership degrees. We next develop fundamental generalized power average aggregation operators for IVDHFLS, including power average operator, power geometric average operator, power ordered weighted average operator and power ordered weighted geometric average operator. Desirable properties and special cases of these aggregation operators are further analyzed. Furthermore, based on the generalized operators above, we construct two approaches for MAGDM with mutually supportive arguments being aggregated under interval-valued dual hesitant fuzzy linguistic environments. Finally, case studies are conducted to verify effectiveness and practicality of the developed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Set Syst 20:87–96

    Article  MathSciNet  MATH  Google Scholar 

  2. Atanassov KT, Gargov G (1989) Interval valued intuitionistic fuzzy sets. Fuzzy Set Syst 31:343–349

    Article  MathSciNet  MATH  Google Scholar 

  3. Brintrup AM, Ramsden J, Takagi H, Tiwari A (2008) Ergonomic chair design by fusing qualitative and quantitative criteria using interactive genetic algorithms. IEEE Trans Evol Comput 12:343–354

    Article  Google Scholar 

  4. Chen HY, Zhou LG, Han B (2011) On compatibility of uncertain additive linguistic preference relations and its application in the group decision making. Knowl Based Syst 24:816–823

    Article  Google Scholar 

  5. Dong Y, Zhang G, Hong W-C, Yu S (2013) Linguistic computational model based on 2-tuples and intervals. IEEE Trans Fuzzy Syst 21:1006–1018

    Article  Google Scholar 

  6. Emrouznejad A, Marra M (2014) Ordered weighted averaging operators 1988–2014: a citation-based literature survey. Int J Intell Syst 29:994–1014

    Article  Google Scholar 

  7. Fan ZP, Liu Y (2010) A method for group decision-making based on multi-granularity uncertain linguistic information. Exp Syst Appl 37:4000–4008

    Article  Google Scholar 

  8. Farhadinia B (2014) Correlation for dual hesitant fuzzy sets and dual interval-valued hesitant fuzzy sets. Int J Intell Syst 29:184–205

    Article  Google Scholar 

  9. Herrera F, Alonso S, Chiclana F, Herrera-Viedma E (2009) Computing with words in decision making: foundations, trends and prospects. Fuzzy Optim Decis Mak 8:337–364

    Article  MathSciNet  MATH  Google Scholar 

  10. Herrera F, Herrera-Viedma E, Verdegay JL (1996) A model of consensus in group decision making under linguistic assessments. Fuzzy Set Syst 78:73–87

    Article  MathSciNet  MATH  Google Scholar 

  11. Hwang CL, Yoon K (1981) Multiple attribute decision making methods and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  12. Jiang L, Liu H, Cai J (2015) The power average operator for unbalanced linguistic term sets. Inf Fusion 22:85–94

    Article  Google Scholar 

  13. Joshi D, Kumar S (2016) Interval-valued intuitionistic hesitant fuzzy Choquet integral based TOPSIS method for multi-criteria group decision making. Eur J Oper Res 248:183–191

    Article  MathSciNet  MATH  Google Scholar 

  14. Ju YB (2014) A new method for multiple criteria group decision making with incomplete weight information under linguistic environment. Appl Math Model 38:5256–5268

    Article  MathSciNet  Google Scholar 

  15. Ju YB, Liu XY, Yang SH (2014) Interval-valued dual hesitant fuzzy aggregation operators and their applications to multiple attribute decision making. J Intell Fuzzy Syst 27:1203–1218

    MathSciNet  MATH  Google Scholar 

  16. Ju YB, Wang AH, Liu XY (2012) Evaluating emergency response capacity by fuzzy AHP and 2-tuple fuzzy linguistic approach. Exp Syst Appl 39:6972–6981

    Article  Google Scholar 

  17. Liao HC, Xu ZS, Zeng XJ, Merigó JM (2015) Qualitative decision making with correlation coefficients of hesitant fuzzy linguistic term sets. Knowl Based Syst 76:127–138

    Article  Google Scholar 

  18. Lin R, Zhao XF, Wei GW (2014) Models for selecting an ERP system with hesitant fuzzy linguistic information. J Intell Fuzzy Syst 26:2155–2165

    MathSciNet  MATH  Google Scholar 

  19. Liu P (2013) Some geometric aggregation operators based on interval intuitionistic uncertain linguistic variables and their application to group decision making. Appl Math Model 37:2430–2444

    Article  MathSciNet  Google Scholar 

  20. Liu P, Jin F (2012) Methods for aggregating intuitionistic uncertain linguistic variables and their application to group decision making. Inf Sci 205:58–71

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu P, Yu X (2014) 2-Dimension uncertain linguistic power generalized weighted aggregation operator and its application in multiple attribute group decision making. Knowl Based Syst 57:69–80

    Article  Google Scholar 

  22. Martínez L, Ruan D, Herrera F, Herrera-Viedma E, Wang PP (2009) Linguistic decision making: tools and applications. Inf Sci 179:2297–2298

    Article  Google Scholar 

  23. Meng F, Chen X, Zhang Q (2014) Multi-attribute decision analysis under a linguistic hesitant fuzzy environment. Inf Sci 267:287–305

    Article  MathSciNet  MATH  Google Scholar 

  24. Meng F, Chen X, Zhang Q (2015) Induced generalized hesitant fuzzy Shapley hybrid operators and their application in multi-attribute decision making. Appl Soft Comput 28:599–607

    Article  Google Scholar 

  25. Merigó JM (2011) A unified model between the weighted average and the induced OWA operator. Exp Syst Appl 38:11560–11572

    Article  Google Scholar 

  26. Merigó JM, Casanovas M, Palacios-Marqués D (2014) Linguistic group decision making with induced aggregation operators and probabilistic information. Appl Soft Comput 24:669–678

    Article  Google Scholar 

  27. Merigó JM, Gil-Lafuente AM (2013) Induced 2-tuple linguistic generalized aggregation operators and their application in decision-making. Inf Sci 236:1–16

    Article  MathSciNet  MATH  Google Scholar 

  28. Merigó JM, Gil-Lafuente AM, Martorell O (2012) Uncertain induced aggregation operators and its application in tourism management. Exp Syst Appl 39:869–880

    Article  Google Scholar 

  29. Merigó JM, Gil-Lafuente AM, Zhou LG, Chen HY (2012) Induced and linguistic generalized aggregation operators and their application in linguistic group decision making. Group Decis Negot 21:531–549

    Article  Google Scholar 

  30. Peng B, Ye C, Zeng S (2012) Uncertain pure linguistic hybrid harmonic averaging operator and generalized interval aggregation operator based approach to group decision making. Knowl Based Syst 36:175–181

    Article  Google Scholar 

  31. Sen A (1970) Collective choice and social welfare. Holden-Day, San Francisco

    MATH  Google Scholar 

  32. Su Z, Xu ZS, Liu HF, Liu SS (2015) Distance and similarity measures for dual hesitant fuzzy sets and their applications in pattern recognition. J Intell Fuzzy Syst 29:731–745

    Article  MathSciNet  Google Scholar 

  33. Sun XY, Gong DW, Jin YC, Chen SS (2013) A new surrogate-assisted interactive genetic algorithm with weighted semisupervised learning. IEEE Trans Cybern 43:685–698

    Article  Google Scholar 

  34. Tan C, Chen X (2010) Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making. Exp Syst Appl 37:149–157

    Article  Google Scholar 

  35. Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst 25:529–539

    MATH  Google Scholar 

  36. Torra V, Narukawa Y (2007) Modeling decisions: information fusion and aggregation operators. Springer, Berlin

    MATH  Google Scholar 

  37. Torra V, Narukawa Y (2009) On hesitant fuzzy sets and decision. In: The 18th IEEE international conference on fuzzy systems. IEEE, Jeju Island, pp 1378–1382

  38. Turksen IB (1986) Interval valued fuzzy sets based on normal forms. Fuzzy Set Syst 20:191–210

    Article  MathSciNet  MATH  Google Scholar 

  39. Vuruskan A, Ince T, Bulgun E, Guzelis C (2015) Intelligent fashion styling using genetic search and neural classification. Int J Cloth Sci Technol 27:283–301

    Article  Google Scholar 

  40. Wan SP (2013) Power average operators of trapezoidal intuitionistic fuzzy numbers and application to multi-attribute group decision making. Appl Math Model 37:4112–4126

    Article  MathSciNet  MATH  Google Scholar 

  41. Wan SP, Dong JY (2015) Power geometric operators of trapezoidal intuitionistic fuzzy numbers and application to multi-attribute group decision making. Appl Soft Comput 29:153–168

    Article  Google Scholar 

  42. Wang JQ, Li JJ (2009) The multi-criteria group decision making method based on multi-granularity intuitionistic two semantics. Sci Technol Inf 33:8–9

    Google Scholar 

  43. Wang JQ, Wang DD, Zhang HY, Chen XH (2015) Multi-criteria group decision making method based on interval 2-tuple linguistic information and Choquet integral aggregation operators. Soft Comput 19:389–405

    Article  Google Scholar 

  44. Wang JQ, Wu JT, Wang J, Zhang HY, Chen XH (2014) Interval-valued hesitant fuzzy linguistic sets and their applications in multi-criteria decision-making problems. Inf Sci 288:55–72

    Article  MathSciNet  Google Scholar 

  45. Xia MM, Xu ZS (2011) Hesitant fuzzy information aggregation in decision making. Int J Approx Reason 52:395–407

    Article  MathSciNet  MATH  Google Scholar 

  46. Xia MM, Xu ZS, Chen N (2013) Some hesitant fuzzy aggregation operators with their application in group decision making. Group Decis Negot 22:259–279

    Article  Google Scholar 

  47. Xu Y, Merigó JM, Wang H (2012) Linguistic power aggregation operators and their application to multiple attribute group decision making. Appl Math Model 36:5427–5444

    Article  MathSciNet  MATH  Google Scholar 

  48. Xu Y, Wang H (2011) Approaches based on 2-tuple linguistic power aggregation operators for multiple attribute group decision making under linguistic environment. Appl Soft Compt 11:3988–3997

    Article  Google Scholar 

  49. Xu ZS (2004) A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf Sci 166:19–30

    Article  MathSciNet  MATH  Google Scholar 

  50. Xu ZS (2004) Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf Sci 168:171–184

    Article  MATH  Google Scholar 

  51. Xu ZS (2005) A multi-attribute group decision making method based on term indices in linguistic evaluation scales. J Syst Eng 20:84–88

    Google Scholar 

  52. Xu ZS (2006) An approach based on the uncertain LOWG and induced uncertain LOWG operators to group decision making with uncertain multiplicative linguistic preference relations. Decis Support Syst 41:488–499

    Article  Google Scholar 

  53. Xu ZS (2007) Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 15:1179–1187

    Article  Google Scholar 

  54. Xu ZS (2009) An interactive approach to multiple attribute group decision making with multigranular uncertain linguistic information. Group Decis Negot 18:119–145

    Article  Google Scholar 

  55. Xu ZS (2011) Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators. Knowl Based Syst 24:749–760

    Article  Google Scholar 

  56. Xu ZS, Xia MM (2011) Distance and similarity measures for hesitant fuzzy sets. Inf Sci 181:2128–2138

    Article  MathSciNet  MATH  Google Scholar 

  57. Xu ZS, Yager RR (2010) Power-geometric operators and their use in group decision making. IEEE Trans Fuzzy Syst 18:94–105

    Article  Google Scholar 

  58. Yager RR (1988) On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans Syst Man Cybern 18:183–190

    Article  MathSciNet  MATH  Google Scholar 

  59. Yager RR (2001) The power average operator. IEEE Trans Syst Man Cybern A 31:724–731

    Article  Google Scholar 

  60. Yager RR (2004) OWA aggregation over a continuous interval argument with applications to decision making. IEEE Trans Syst Man Cybern B 34:1952–1963

    Article  Google Scholar 

  61. Yager RR, Kacprzyk J, Beliakov G (2011) Recent developments in the ordered weighted averaging operators: theory and practice. Springer, Berlin

    Book  Google Scholar 

  62. Yang SH, Ju YB (2014) Dual hesitant fuzzy linguistic aggregation operators and their applications to multi-attribute decision making. J Intell Fuzzy Syst 27:1935–1947

    MathSciNet  MATH  Google Scholar 

  63. Yu XH, Xu ZS (2013) Prioritized intuitionistic fuzzy aggregation operators. Inf Fusion 14:108–116

    Article  MathSciNet  Google Scholar 

  64. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  65. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-I. Inf Sci 8:199–249

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhang Z, Wang C, Tian D, Li K (2014) Induced generalized hesitant fuzzy operators and their application to multiple attribute group decision making. Comput Ind Eng 67:116–138

    Article  Google Scholar 

  67. Zhou LG, Chen HY (2012) A generalization of the power aggregation operators for linguistic environment and its application in group decision making. Knowl Based Syst 26:216–224

    Article  Google Scholar 

  68. Zhou LG, Chen HY, Liu JP (2012) Generalized power aggregation operators and their applications in group decision making. Comput Ind Eng 62:989–999

    Article  Google Scholar 

  69. Zhou LG, Chen HY, Liu JP (2012) Generalized weighted exponential proportional aggregation operators and their applications to group decision making. Appl Math Model 36:4365–4384

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhou LG, Tao ZF, Chen HY, Liu JP (2014) Continuous interval-valued intuitionistic fuzzy aggregation operators and their applications to group decision making. Appl Math Model 38:2190–2205

    Article  MathSciNet  Google Scholar 

  71. Zhu B, Xu ZS (2014) Some results for dual hesitant fuzzy sets. J Intell Fuzzy Syst 26:1657–1668

    MathSciNet  MATH  Google Scholar 

  72. Zhu B, Xu ZS, Xia MM (2012) Dual hesitant fuzzy sets. J Appl Math 2012:1–13

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by China Scholarship Council, the National Science Foundation of China (Nos. 71201145, 71271072, and 71331002), the Research Fund for the Doctoral Program of Higher Education of China (No. 20110111110006), and the Social Science Foundation of Ministry of Education of China (No. 11YJC630283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junling Zhang.

Appendices

Appendix 1: Proof of theorem 3.1

Obviously, rules (1) and (2) are correct. For rule (3), we have

$$\lambda (sd_{1} \oplus sd_{2} ) = \lambda \bigcup\nolimits_{{\left( {s_{{\alpha _{1} }} ,\tilde{h}_{1} ,\tilde{g}_{1} } \right) \in sd_{1} ,\left( {s_{{\alpha _{2} }} ,\tilde{h}_{2} ,\tilde{g}_{2} } \right) \in sd_{2} }} {\left( {s_{{\alpha _{1} + \alpha _{2} }} ,\bigcup\nolimits_{{[\mu _{1}^{L} ,\mu _{1}^{U} ] \in \tilde{h}_{1} ,[\mu _{2}^{L} ,\mu _{2}^{U} ] \in \tilde{h}_{2} ,[\nu _{1}^{L} ,\nu _{1}^{U} ] \in \tilde{g}_{1} ,[\nu _{2}^{L} ,\nu _{2}^{U} ] \in \tilde{g}_{2} }} {} } \right.} \left. {\{ \{ [\mu _{1}^{L} + \mu _{2}^{L} - \mu _{1}^{L} \mu _{2}^{L} ,\mu _{1}^{U} + \mu _{2}^{U} - \mu _{1}^{U} \mu _{2}^{U} ]\} ,\{ [\nu _{1}^{L} \nu _{2}^{L} ,\nu _{1}^{U} \nu _{2}^{U} ]\} \} } \right) = \bigcup\nolimits_{{\left( {s_{{\alpha _{1} }} ,\tilde{h}_{1} ,\tilde{g}_{1} } \right) \in sd_{1} ,\left( {s_{{\alpha _{2} }} ,\tilde{h}_{2} ,\tilde{g}_{2} } \right) \in sd_{2} }} {\left( {s_{{\lambda (\alpha _{1} + \alpha _{2} )}} ,\bigcup\nolimits_{{[\mu _{1}^{L} ,\mu _{1}^{U} ] \in \tilde{h}_{1} ,[\mu _{2}^{L} ,\mu _{2}^{U} ] \in \tilde{h}_{2} ,[\nu _{1}^{L} ,\nu _{1}^{U} ] \in \tilde{g}_{1} ,[\nu _{2}^{L} ,\nu _{2}^{U} ] \in \tilde{g}_{2} }} {} } \right.} \left. {\left. {\{ \{ [1 - (1 - (\mu _{1}^{L} + \mu _{2}^{L} - \mu _{1}^{L} \mu _{2}^{L} ))^{\lambda } ,1 - (1 - (\mu _{1}^{U} + \mu _{2}^{U} - \mu _{1}^{U} \mu _{2}^{U} ))^{\lambda } ]\} ,\{ [(\nu _{1}^{L} \nu _{2}^{L} )^{\lambda } ,(\nu _{1}^{U} \nu _{2}^{U} )^{\lambda } ]\} \} } \right\rangle } \right\}, \lambda sd_{1} = \bigcup\nolimits_{{\left( {s_{{\alpha _{1} }} ,\tilde{h}_{1} ,\tilde{g}_{1} } \right) \in sd_{1} }} {\left( {s_{{\lambda \alpha _{1} }} ,\bigcup\nolimits_{{[\mu _{1}^{L} ,\mu _{1}^{U} ] \in \tilde{h}_{1} ,[\nu _{1}^{L} ,\nu _{1}^{U} ] \in \tilde{g}_{1} }} {\{ \{ [1 - (1 - \mu _{1}^{L} )^{\lambda } ,1 - (1 - \mu _{1}^{U} )^{\lambda } ]\} ,\{ [(\nu _{1}^{L} )^{\lambda } ,(\nu _{1}^{U} )^{\lambda } ]\} \} } } \right)} \lambda sd_{2} = \bigcup\nolimits_{{\left( {s_{{\alpha _{2} }} ,\tilde{h}_{2} ,\tilde{g}_{2} } \right) \in sd_{2} }} {\left( {s_{{\lambda \alpha _{2} }} ,\bigcup\nolimits_{{[\mu _{2}^{L} ,\mu _{2}^{U} ] \in \tilde{h}_{2} ,[\nu _{2}^{L} ,\nu _{2}^{U} ] \in \tilde{g}_{2} }} {\{ \{ [1 - (1 - \mu _{2}^{L} )^{\lambda } ,1 - (1 - \mu _{2}^{U} )^{\lambda } ]\} ,\{ [(\nu _{2}^{L} )^{\lambda } ,(\nu _{2}^{U} )^{\lambda } ]\} \} } } \right)} \lambda sd_{1} \oplus \lambda sd_{2} = \bigcup\nolimits_{{\left( {s_{{\alpha _{1} }} ,\tilde{h}_{1} ,\tilde{g}_{1} } \right) \in sd_{1} ,\left( {s_{{\alpha _{2} }} ,\tilde{h}_{2} ,\tilde{g}_{2} } \right) \in sd_{2} }} {\left( {s_{{\lambda (\alpha _{1} + \alpha _{2} )}} ,\bigcup\nolimits_{{[\mu _{1}^{L} ,\mu _{1}^{U} ] \in \tilde{h}_{1} ,[\mu _{2}^{L} ,\mu _{2}^{U} ] \in \tilde{h}_{2} ,[\nu _{1}^{L} ,\nu _{1}^{U} ] \in \tilde{g}_{1} ,[\nu _{2}^{L} ,\nu _{2}^{U} ] \in \tilde{g}_{2} }} {} } \right.} \left. {\{ \{ [1 - (1 - (\mu _{1}^{L} + \mu _{2}^{L} - \mu _{1}^{L} \mu _{2}^{L} ))^{\lambda } ,1 - (1 - (\mu _{1}^{U} + \mu _{2}^{U} - \mu _{1}^{U} \mu _{2}^{U} ))^{\lambda } ]\} ,\{ [(\nu _{1}^{L} \nu _{2}^{L} )^{\lambda } ,(\nu _{1}^{U} \nu _{2}^{U} )^{\lambda } ]\} \} } \right) = \lambda (sd_{1} \oplus sd_{2} );$$

For rule (4),

$$sd_{1} ^{\lambda } = \bigcup\nolimits_{{\left( {s_{{\alpha _{1} }} ,\tilde{h}_{1} ,\tilde{g}_{1} } \right) \in sd}} {\left( {s_{{\alpha _{1}^{\lambda } }} ,\bigcup\nolimits_{{[\mu _{1}^{L} ,\mu _{1}^{U} ] \in \tilde{h}_{1} ,[\nu _{1}^{L} ,\nu _{1}^{U} ] \in \tilde{g}_{1} }} {\{ \{ [(\mu _{1}^{L} )^{\lambda } ,(\mu _{1}^{U} )^{\lambda } ]\} ,\{ [1 - (1 - \nu _{1}^{L} )^{\lambda } ,1 - (1 - \nu _{1}^{U} )^{\lambda } ]\} \} } } \right)} , sd_{2} ^{\lambda } = \bigcup\nolimits_{{\left( {s_{{\alpha _{2} }} ,\tilde{h}_{2} ,\tilde{g}_{2} } \right) \in sd_{2} }} {\left( {s_{{\alpha _{2}^{\lambda } }} ,\bigcup\nolimits_{{[\mu _{2}^{L} ,\mu _{2}^{U} ] \in \tilde{h}_{2} ,[\nu _{2}^{L} ,\nu _{2}^{U} ] \in \tilde{g}_{2} }} {\{ \{ [(\mu _{2}^{L} )^{\lambda } ,(\mu _{2}^{U} )^{\lambda } ]\} ,\{ [1 - (1 - \nu _{2}^{L} )^{\lambda } ,1 - (1 - \nu _{2}^{U} )^{\lambda } ]\} \} } } \right)} , sd_{1} \otimes sd_{2} = \bigcup\nolimits_{{\left( {s_{{\alpha _{1} }} ,\tilde{h}_{1} ,\tilde{g}_{1} } \right) \in sd_{1} ,\left( {s_{{\alpha _{2} }} ,\tilde{h}_{2} ,\tilde{g}_{2} } \right) \in sd_{2} }} {\left( {s_{{\alpha _{1} \alpha _{2} }} ,\bigcup\nolimits_{{[\mu _{1}^{L} ,\mu _{1}^{U} ] \in \tilde{h}_{1} ,[\mu _{2}^{L} ,\mu _{2}^{U} ] \in \tilde{h}_{2} ,[\nu _{1}^{L} ,\nu _{1}^{U} ] \in \tilde{g}_{1} ,[\nu _{2}^{L} ,\nu _{2}^{U} ] \in \tilde{g}_{2} }} {} } \right.} \left. {\{ \{ [\mu _{1}^{L} \mu _{2}^{L} ,\mu _{1}^{U} \mu _{2}^{U} ]\} ,\{ [\nu _{1}^{L} + \nu _{2}^{L} - \nu _{1}^{L} \nu _{2}^{L} ,\nu _{1}^{U} + \nu _{2}^{U} - \nu _{1}^{U} \nu _{2}^{U} ]\} \} } \right), sd_{1} ^{\lambda } \otimes sd_{2} ^{\lambda } = \bigcup\nolimits_{{\left( {s_{{\alpha _{1} }} ,\tilde{h}_{1} ,\tilde{g}_{1} } \right) \in sd_{1} ,\left( {s_{{\alpha _{2} }} ,\tilde{h}_{2} ,\tilde{g}_{2} } \right) \in sd_{2} }} {\left( {s_{{(\alpha _{1} \alpha _{2} )^{\lambda } }} ,\bigcup\nolimits_{{[\mu _{1}^{L} ,\mu _{1}^{U} ] \in \tilde{h}_{1} ,[\mu _{2}^{L} ,\mu _{2}^{U} ] \in \tilde{h}_{2} ,[\nu _{1}^{L} ,\nu _{1}^{U} ] \in \tilde{g}_{1} ,[\nu _{2}^{L} ,\nu _{2}^{U} ] \in \tilde{g}_{2} }} {} } \right.} \left. {\{ \{ [(\mu _{1}^{L} \mu _{2}^{L} )^{\lambda } ,(\mu _{1}^{U} \mu _{2}^{U} )^{\lambda } ]\} ,\{ [1 - (1 - (\nu _{1}^{L} + \nu _{2}^{L} - \nu _{1}^{L} \nu _{2}^{L} ))^{\lambda } ,1 - (1 - (\nu _{1}^{U} + \nu _{2}^{U} - \nu _{1}^{U} \nu _{2}^{U} ))^{\lambda } ]\} \} } \right) = (sd_{1} \otimes sd_{2} )^{\lambda } ;$$

For rule (5),

$$\begin{aligned} & \lambda_{1} sd = \bigcup\limits_{{(s_{\alpha } ,\tilde{h},\tilde{g}) \in sd}} {\left( {s_{{\lambda_{1} \alpha }} ,\bigcup\limits_{{[\mu^{L} ,\mu^{U} ] \in \tilde{h},[\nu^{L} ,\nu^{U} ] \in \tilde{g}}} {\{ \{ [1 - (1 - \mu^{L} )^{{\lambda_{1} }} ,1 - (1 - \mu^{U} )^{{\lambda_{1} }} ]\} ,\{ [(\nu^{L} )^{{\lambda_{1} }} ,(\nu^{U} )^{{\lambda_{1} }} ]\} \} } } \right)} , \\ & \lambda_{2} sd = \bigcup\limits_{{(s_{\alpha } ,\tilde{h},\tilde{g}) \in sd}} {\left( {s_{{\lambda_{2} \alpha }} ,\bigcup\limits_{{[\mu^{L} ,\mu^{U} ] \in \tilde{h},[\nu^{L} ,\nu^{U} ] \in \tilde{g}}} {\{ \{ [1 - (1 - \mu^{L} )^{{\lambda_{2} }} ,1 - (1 - \mu^{U} )^{{\lambda_{2} }} ]\} ,\{ [(\nu^{L} )^{{\lambda_{2} }} ,(\nu^{U} )^{{\lambda_{2} }} ]\} \} } } \right)} , \\ & \lambda_{1} sd + \lambda_{2} sd = \bigcup\limits_{{(s_{\alpha } ,\tilde{h},\tilde{g}) \in sd}} {\left( {s_{{(\lambda_{1} + \lambda_{2} )\alpha }} ,} \right.} \\ & \quad \left. {\bigcup\limits_{{[\mu^{L} ,\mu^{U} ] \in \tilde{h},[\nu^{L} ,\nu^{U} ] \in \tilde{g}}} {\{ \{ [1 - (1 - \mu^{L} )^{{\lambda_{1} + \lambda_{2} }} ,1 - (1 - \mu^{U} )^{{\lambda_{1} + \lambda_{2} }} ]\} ,\{ [(\nu^{L} )^{{\lambda_{1} + \lambda_{2} }} ,(\nu^{U} )^{{\lambda_{1} + \lambda_{2} }} ]\} \} } } \right) \\ & \quad = (\lambda_{1} + \lambda_{2} )sd; \\ \end{aligned}$$

For rule (6)

$$sd^{{\lambda _{1} }} = \bigcup\nolimits_{{\left( {s_{\alpha } ,\tilde{h},\tilde{g}} \right) \in sd}} {\left( {s_{{\alpha ^{{\lambda _{1} }} }} ,\bigcup\nolimits_{{[\mu ^{L} ,\mu ^{U} ] \in \tilde{h},[\nu ^{L} ,\nu ^{U} ] \in \tilde{g}}} {\{ \{ [(\mu ^{L} )^{{\lambda _{1} }} ,(\mu ^{U} )^{{\lambda _{1} }} ]\} ,\{ [1 - (1 - \nu ^{L} )^{{\lambda _{1} }} ,1 - (1 - \nu ^{U} )^{{\lambda _{1} }} ]\} \} } } \right)} , sd^{{\lambda _{2} }} = \bigcup\nolimits_{{\left( {s_{\alpha } ,\tilde{h},\tilde{g}} \right) \in sd}} {\left( {s_{{\alpha ^{{\lambda _{2} }} }} ,\bigcup\nolimits_{{[\mu ^{L} ,\mu ^{U} ] \in \tilde{h},[\nu ^{L} ,\nu ^{U} ] \in \tilde{g}}} {\{ \{ [(\mu ^{L} )^{{\lambda _{2} }} ,(\mu ^{U} )^{{\lambda _{2} }} ]\} ,\{ [1 - (1 - \nu ^{L} )^{{\lambda _{2} }} ,1 - (1 - \nu ^{U} )^{{\lambda _{2} }} ]\} \} } } \right)} , sd^{{\lambda _{1} }} \otimes sd^{{\lambda _{2} }} = \bigcup\nolimits_{{\left( {s_{\alpha } ,\tilde{h},\tilde{g}} \right) \in sd}} {\left( {s_{{\alpha ^{{\lambda _{1} + \lambda _{2} }} }} ,} \right.} \left. {\bigcup\nolimits_{{[\mu ^{L} ,\mu ^{U} ] \in \tilde{h},[\nu ^{L} ,\nu ^{U} ] \in \tilde{g}}} {\{ \{ [(\mu ^{L} )^{{\lambda _{1} + \lambda _{2} }} ,(\mu ^{U} )^{{\lambda _{1} + \lambda _{2} }} ]\} ,\{ [1 - (1 - \nu ^{L} )^{{\lambda _{1} + \lambda _{2} }} ,1 - (1 - \nu ^{U} )^{{\lambda _{1} + \lambda _{2} }} ]\} \} } } \right) = sd^{{\lambda _{1} + \lambda _{2} }}$$

Appendix 2: Proof of Theorem 4.1

  1. 1.

    When \(n = 1,\) obviously, it is right.

$$WGIVDHFLPA(sd) = \left( {s_{\alpha } ,\bigcup\limits_{{[\mu^{L} ,\mu^{U} ] \in \tilde{h},[\nu^{L} ,\nu^{U} ] \in \tilde{g}}} {\{ \{ [\mu_{j}^{L} ,\mu_{j}^{U} ]\} ,\{ [\nu_{j}^{L} ,\nu_{j}^{U} ]\} \} } } \right).$$
  1. 2.

    When \(n = 2,\)

$$sd_{1} ^{\lambda } = \bigcup\nolimits_{{\left( {s_{{\alpha _{1} }} ,\tilde{h}_{1} ,\tilde{g}_{1} } \right) \in sd_{1} }} {\left( {s_{{\alpha _{1} ^{\lambda } }} ,\bigcup\nolimits_{{[\mu _{1}^{L} ,\mu _{1}^{U} ] \in \tilde{h}_{1} ,[\nu _{1}^{L} ,\nu _{1}^{U} ] \in \tilde{g}_{1} }} {\left\{ {\left\{ {\left[ {(\mu _{1}^{L} )^{\lambda } ,(\mu _{1}^{U} )^{\lambda } } \right]} \right\},\left\{ {\left[ {1 - (1 - \nu _{1}^{L} )^{\lambda } ,1 - (1 - \nu _{1}^{U} )^{\lambda } } \right]} \right\}} \right\}} } \right)} , \frac{{\omega _{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}sd_{1} ^{\lambda } = \bigcup\nolimits_{{\left( {s_{{\alpha _{1} }} ,\tilde{h}_{1} ,\tilde{g}_{1} } \right) \in sd_{1} }} {\left( {s_{{\frac{{\omega _{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}\alpha _{1} ^{\lambda } }} ,} \right.} \bigcup\nolimits_{{[\mu _{1}^{L} ,\mu _{1}^{U} ] \in \tilde{h}_{1} ,[\nu _{1}^{L} ,\nu _{1}^{U} ] \in \tilde{g}_{1} }} {\left\{ {\left\{ {\left[ {1 - (1 - (\mu _{1}^{L} )^{\lambda } )^{{\frac{{\omega _{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} ,1 - (1 - (\mu _{1}^{U} )^{\lambda } )^{{\frac{{\omega _{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} } \right]} \right\}} \right.,} \left. {\left. {\left\{ {\left[ {(1 - (1 - \nu _{1}^{L} )^{\lambda } )^{{\frac{{\omega _{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} ,(1 - (1 - \nu _{1}^{U} )^{\lambda } )^{{\frac{{\omega _{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} } \right]} \right\}} \right\}} \right), sd_{2} ^{\lambda } = \bigcup\nolimits_{{\left( {s_{{\alpha _{2} }} ,\tilde{h}_{2} ,\tilde{g}_{2} } \right) \in sd_{2} }} {\left( {s_{{\alpha _{2} ^{\lambda } }} ,\bigcup\nolimits_{{[\mu _{2}^{L} ,\mu _{2}^{U} ] \in \tilde{h}_{2} ,[\nu _{2}^{L} ,\nu _{2}^{U} ] \in \tilde{g}_{2} }} {\left\{ {\left\{ {\left[ {(\mu _{2}^{L} )^{\lambda } ,(\mu _{2}^{U} )^{\lambda } } \right]} \right\},\left\{ {\left[ {1 - (1 - \nu _{2}^{L} )^{\lambda } ,1 - (1 - \nu _{2}^{U} )^{\lambda } } \right]} \right\}} \right\}} } \right)} , \frac{{\omega _{2} (1 + T(sd_{2} )}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}sd_{2} ^{\lambda } = \bigcup\nolimits_{{\left( {s_{{\alpha _{2} }} ,\tilde{h}_{2} ,\tilde{g}_{2} } \right) \in sd_{2} }} {\left( {s_{{\frac{{\omega _{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}\alpha _{2} ^{\lambda } }} ,} \right.} \bigcup\nolimits_{{[\mu _{2}^{L} ,\mu _{2}^{U} ] \in \tilde{h}_{2} ,[\nu _{2}^{L} ,\nu _{2}^{U} ] \in \tilde{g}_{2} }} {\left\{ {\left\{ {\left[ {1 - (1 - (\mu _{2}^{L} )^{\lambda } )^{{\frac{{\omega _{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} ,1 - (1 - (\mu _{2}^{U} )^{\lambda } )^{{\frac{{\omega _{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} } \right]} \right\}} \right.,} \left. {\left. {\left\{ {\left[ {(1 - (1 - \nu _{2}^{L} )^{\lambda } )^{{\frac{{\omega _{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} ,(1 - (1 - \nu _{2}^{U} )^{\lambda } )^{{\frac{{\omega _{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} } \right]} \right\}} \right\}} \right), \frac{{\omega _{1} (1 + T(sd_{1} )}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}sd_{1} ^{\lambda } + \frac{{\omega _{2} (1 + T(sd_{2} )}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}sd_{2} ^{\lambda } = \bigcup\nolimits_{{\left( {s_{{\alpha _{1} }} ,\tilde{h}_{1} ,\tilde{g}_{1} } \right) \in sd_{1} ,\left( {s_{{\alpha _{2} }} ,\tilde{h}_{2} ,\tilde{g}_{2} } \right) \in sd_{2} }} {\left( {s_{{\sum\limits_{{j = 1}}^{2} {\frac{{\omega _{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}(\alpha _{j} )^{\lambda } } }} ,} \right.} \bigcup\nolimits_{{[\mu _{1}^{L} ,\mu _{1}^{U} ] \in \tilde{h}_{1} ,[\mu _{2}^{L} ,\mu _{2}^{U} ] \in \tilde{h}_{2} ,[\nu _{1}^{L} ,\nu _{1}^{U} ] \in \tilde{g}_{1} ,[\nu _{2}^{L} ,\nu _{2}^{U} ] \in \tilde{g}_{2} }} {\left\{ {\left\{ {\left[ {1 - (1 - (\mu _{1}^{L} )^{\lambda } )^{{\frac{{\omega _{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} (1 - (\mu _{2}^{L} )^{\lambda } )^{{\frac{{\omega _{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} ,} \right.} \right.} \right.} \, \left. {\left. {1 - (1 - (\mu _{1}^{U} )^{\lambda } )^{{\frac{{\omega _{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} (1 - (\mu _{2}^{U} )^{\lambda } )^{{\frac{{\omega _{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} } \right]} \right\}, \left\{ {\left[ {(1 - (1 - \nu _{1}^{L} )^{\lambda } )^{{\frac{{\omega _{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} (1 - (1 - \nu _{2}^{L} )^{\lambda } )^{{\frac{{\omega _{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} } \right.} \right., \left. {\left. {\left. {\left. {(1 - (1 - \nu _{1}^{U} )^{\lambda } )^{{\frac{{\omega _{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} (1 - (1 - \nu _{2}^{U} )^{\lambda } )^{{\frac{{\omega _{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}}} } \right]} \right\}} \right\}} \right), \left( {\frac{{\omega _{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}sd_{1} ^{\lambda } + \frac{{\omega _{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}sd_{2} ^{\lambda } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-\nulldelimiterspace} \lambda }}} = \bigcup\nolimits_{{\left( {s_{{\alpha _{j} }} ,\tilde{h}_{j} ,\tilde{g}_{j} } \right) \in sd_{j} }} {\left( {s_{{\left( {\sum\limits_{{j = 1}}^{2} {\frac{{\omega _{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{{i = 1}}^{2} {\omega _{i} (1 + T(sd_{i} ))} }}(\alpha _{j} )^{\lambda } } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-\nulldelimiterspace} \lambda }}} }} ,} \right.} \cup _{{[\mu _{j}^{L} ,\mu _{j}^{U} ] \in \tilde{h}_{j} ,[\nu _{j}^{L} ,\nu _{j}^{U} ] \in \tilde{g}_{j} }} \left\{ {\left\{ {\left[ {\left( {1 - \prod\limits_{{j = 1}}^{2} {(1 - (\mu _{j}^{L} )^{\lambda } )^{{\frac{{\omega _{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{{i = 1}}^{n} {\omega _{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-\nulldelimiterspace} \lambda }}} ,\left( {1 - \prod\limits_{{j = 1}}^{2} {(1 - (\mu _{j}^{U} )^{\lambda } )^{{\frac{{\omega _{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{{i = 1}}^{n} {\omega _{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-\nulldelimiterspace} \lambda }}} } \right]} \right\},} \right. \left. {\left. {\left\{ {\left[ {1 - \left( {1 - \prod\limits_{{j = 1}}^{2} {(1 - (1 - \nu _{j}^{L} )^{\lambda } )^{{\frac{{\omega _{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{{i = 1}}^{n} {\omega _{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-\nulldelimiterspace} \lambda }}} ,1 - \left( {1 - \prod\limits_{{j = 1}}^{2} {(1 - (1 - \nu _{j}^{U} )^{\lambda } )^{{\frac{{\omega _{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{{i = 1}}^{n} {\omega _{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-\nulldelimiterspace} \lambda }}} } \right]} \right\}} \right\}} \right).$$

So when \(n = 2,\) Theorem 4.1 also is right.

  1. 3.

    Suppose when \(n = k,\) Theorem 4.1 is right, then we have

    $$\begin{aligned} & WGIVDHFLPA_{\omega ,\lambda } (sd_{1} ,sd_{2} ,\ldots ,sd_{k} ) = \bigcup\limits_{{(s_{{\alpha_{j} }} ,\tilde{h}_{j} ,\tilde{g}_{j} ) \in sd_{j} }} {\left( {s_{{\left( {\sum\nolimits_{j = 1}^{k} {\frac{{\omega_{j} (1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}(\alpha_{j} )^{\lambda } } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} }} ,} \right.} \\ & \quad \bigcup\limits_{{[\mu_{j}^{L} ,\mu_{j}^{U} ] \in \tilde{h}_{j} ,[\nu_{j}^{L} ,\nu_{j}^{U} ] \in \tilde{g}_{j} }} {\left\{ {\left\{ {\left[ {\left( {1 - \prod\limits_{j = 1}^{k} {(1 - (\mu_{j}^{L} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} ,\left( {1 - \prod\limits_{j = 1}^{k} {(1 - (\mu_{j}^{U} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right]} \right\},} \right.} \\ &\left. {\left. { \quad \quad \left\{ {\left[ {1 - \left( {1 - \prod\limits_{j = 1}^{k} {(1 - (1 - \nu_{j}^{L} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} ,1 - \left( {1 - \prod\limits_{j = 1}^{k} {(1 - (1 - \nu_{j}^{U} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right]} \right\}} \right\}} \right), \\ & \mathop \oplus \limits_{j = 1}^{k} \omega_{j} sd_{j}^{\lambda } = \bigcup\limits_{{(s_{{\alpha_{j} }} ,\tilde{h}_{j} ,\tilde{g}_{j} ) \in sd_{j} }} {\left( {s_{{\sum\nolimits_{j = 1}^{k} {\frac{{\omega_{j} (1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{k} {\omega_{i} (1 + T(sd_{i} ))} }}(\alpha_{j} )^{\lambda } } }} ,} \right.} \\ & \quad \bigcup\limits_{{[\mu_{j}^{L} ,\mu_{j}^{U} ] \in \tilde{h}_{j} ,[\nu_{j}^{L} ,\nu_{j}^{U} ] \in \tilde{g}_{j} }} {\left\{ {\left\{ {\left[ {1 - \prod\limits_{j = 1}^{k} {(1 - (\mu_{j}^{L} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } ,1 - \prod\limits_{j = 1}^{k} {(1 - (\mu_{j}^{U} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right]} \right\},} \right.} \\ &\left. {\left. { \quad \quad \left\{ {\left[ {\prod\limits_{j = 1}^{k} {(1 - (1 - \nu_{j}^{L} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } ,\prod\limits_{j = 1}^{k} {(1 - (1 - \nu_{j}^{U} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right]} \right\}} \right\}} \right). \\ \end{aligned}$$

Then when \(n = k + 1,\)

$$\begin{aligned} & WGIVDHFLPA_{\omega ,\lambda } (sd_{1} ,sd_{2} , \ldots ,sd_{k + 1} ) \\ & \quad = \left( {\left( {\mathop \oplus \limits_{j = 1}^{k} \frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}sd_{j}^{\lambda } } \right) \oplus \frac{{\omega_{k + 1} (1 + T(sd_{k + 1} ))}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}sd_{k + 1}^{\lambda } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad = \bigcup\limits_{{(s_{{\alpha_{j} }} ,\tilde{h}_{j} ,\tilde{g}_{j} ) \in sd_{j} }} {\left( {s_{{\left( {\sum\nolimits_{j = 1}^{k + 1} {\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}(\alpha_{j} )^{\lambda } } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} }} ,} \right.} \\ & \quad \bigcup\limits_{{[\mu_{j}^{L} ,\mu_{j}^{U} ] \in \tilde{h}_{j} ,[\nu_{j}^{L} ,\nu_{j}^{U} ] \in \tilde{g}_{j} }} {\left\{ {\left\{ {\left[ {\left( {1 - \prod\limits_{j = 1}^{k + 1} {(1 - (\mu_{j}^{L} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} ,\left( {1 - \prod\limits_{j = 1}^{k + 1} {(1 - (\mu_{j}^{U} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right]} \right\},} \right.} \\ &\left. {\left. { \quad \quad \left\{ {\left[ {1 - \left( {1 - \prod\limits_{j = 1}^{k + 1} {(1 - (1 - \nu_{j}^{L} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} ,1 - \left( {1 - \prod\limits_{j = 1}^{k + 1} {(1 - (1 - \nu_{j}^{U} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right]} \right\}} \right\}} \right). \\ \end{aligned}$$

So, when \(n = k + 1,\) Theorem 4.1 is right too.

According to steps (1), (2), (3), we can conclude that Theorem 4.1 is right for all n.□

Appendix 3: Proof of Theorem 4.4

1. When \(n = 1,\) obviously, it is right.

2. When \(n = 2,\)

$$\begin{aligned} & (\lambda sd_{1} )^{{\frac{{(\omega_{1} (1 + T(sd_{1} )))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} = \bigcup\limits_{{(s_{{\alpha_{1} }} ,\tilde{h}_{1} ,\tilde{g}_{1} ) \in sd_{1} }} {\left( {s_{{\left( {\lambda \alpha_{1} } \right)^{{\frac{{\omega_{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} }} ,} \right.} \\ & \quad \bigcup\limits_{{[\mu_{1}^{L} ,\mu_{1}^{U} ] \in \tilde{h}_{1} ,[\nu_{1}^{L} ,\nu_{1}^{U} ] \in \tilde{g}_{1} }} {\left\{ {\left\{ {\left[ {(1 - (1 - \mu_{1}^{L} )^{\lambda } )^{{\frac{{\omega_{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} ,(1 - (1 - \mu_{1}^{U} )^{\lambda } )^{{\frac{{\omega_{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } \right]} \right\},} \right.} \\ & \left. {\left. { \quad \quad \left\{ {\left[ {1 - (1 - (\nu_{1}^{L} )^{\lambda } )^{{\frac{{\omega_{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} ,1 - (1 - (\nu_{1}^{U} )^{\lambda } )^{{\frac{{\omega_{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } \right]} \right\}} \right\}} \right), \\ & (\lambda sd_{2} )^{{\frac{{(\omega_{2} (1 + T(sd_{2} )))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} = \bigcup\limits_{{(s_{{\alpha_{2} }} ,\tilde{h}_{2} ,\tilde{g}_{2} ) \in sd_{2} }} {\left( {s_{{\left( {\lambda \alpha_{2} } \right)^{{\frac{{\omega_{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} }} ,} \right.} \\ & \quad \bigcup\limits_{{[\mu_{2}^{L} ,\mu_{2}^{U} ] \in \tilde{h}_{2} ,[\nu_{2}^{L} ,\nu_{2}^{U} ] \in \tilde{g}_{2} }} {\left\{ {\left\{ {\left[ {(1 - (1 - \mu_{2}^{L} )^{\lambda } )^{{\frac{{\omega_{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} ,(1 - (1 - \mu_{2}^{U} )^{\lambda } )^{{\frac{{\omega_{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } \right]} \right\},} \right.} \\ & \left. {\left. { \quad \quad \left\{ {\left[ {1 - (1 - (\nu_{2}^{L} )^{\lambda } )^{{\frac{{\omega_{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} ,1 - (1 - (\nu_{2}^{U} )^{\lambda } )^{{\frac{{\omega_{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } \right]} \right\}} \right\}} \right), \\ & (\lambda sd_{1} )^{{\omega_{1} }} \otimes (\lambda sd_{2} )^{{\omega_{2} }} = \bigcup\limits_{{(s_{{\alpha_{1} }} ,\tilde{h}_{1} ,\tilde{g}_{1} ) \in sd_{1} ,(s_{{\alpha_{2} }} ,\tilde{h}_{2} ,\tilde{g}_{2} ) \in sd_{2} }} {} \\ & \quad \quad \left( {s_{{(\lambda \alpha_{1} )^{{\frac{{\omega_{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} (\lambda \alpha_{2} )^{{\frac{{\omega_{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} }} ,} \right.\bigcup\limits_{{[\mu_{1}^{L} ,\mu_{1}^{U} ] \in \tilde{h}_{1} ,[\mu_{2}^{L} ,\mu_{2}^{U} ] \in \tilde{h}_{2} ,[\nu_{1}^{L} ,\nu_{1}^{U} ] \in \tilde{g}_{1} ,[\nu_{2}^{L} ,\nu_{2}^{U} ] \in \tilde{g}_{2} }} {} \\ & \quad \quad \left\{ {\left\{ {\left[ {(1 - (1 - \mu_{1}^{L} )^{\lambda } )^{{\frac{{\omega_{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} (1 - (1 - \mu_{2}^{L} )^{\lambda } )^{{\frac{{\omega_{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} ,(1 - (1 - \mu_{1}^{U} )^{\lambda } )^{{\frac{{\omega_{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} (1 - (1 - \mu_{2}^{U} )^{\lambda } )^{{\frac{{\omega_{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } \right]} \right\},} \right. \\ & \left. {\left. { \quad \quad \left\{ {\left[ {1 - (1 - (\nu_{1}^{L} )^{\lambda } )^{{\frac{{\omega_{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} (1 - (\nu_{2}^{L} )^{\lambda } )^{{\frac{{\omega_{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} ,1 - (1 - (\nu_{1}^{U} )^{\lambda } )^{{\frac{{\omega_{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} (1 - (\nu_{2}^{U} )^{\lambda } )^{{\frac{{\omega_{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } \right]} \right\}} \right\}} \right), \\ & \frac{1}{\lambda }((\lambda sd_{1} )^{{\omega_{1} }} \otimes (\lambda sd_{2} )^{{\omega_{2} }} ) = \bigcup\limits_{{\langle \tilde{s}_{{\vartheta_{1} }} ,\tilde{h}_{1} ,\tilde{g}_{1} \rangle \in sd_{1} ,\langle \tilde{s}_{{\vartheta_{2} }} ,\tilde{h}_{2} ,\tilde{g}_{2} \rangle \in sd_{2} }} {} \\ & \quad \quad \left( {s_{{\frac{1}{\lambda }\left( {(\lambda \alpha_{1} )^{{\frac{{\omega_{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} (\lambda \alpha_{2} )^{{\frac{{\omega_{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } \right)}} } \right.,\bigcup\limits_{{[\mu_{1}^{L} ,\mu_{1}^{U} ] \in \tilde{h}_{1} ,[\mu_{2}^{L} ,\mu_{2}^{U} ] \in \tilde{h}_{2} ,[\nu_{1}^{L} ,\nu_{1}^{U} ] \in \tilde{g}_{1} ,[\nu_{2}^{L} ,\nu_{2}^{U} ] \in \tilde{g}_{2} }} {} \\ & \quad \quad \left\{ {\left\{ {\left[ {1 - \left( {1 - (1 - (1 - \mu_{1}^{L} )^{\lambda } )^{{\frac{{\omega_{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} (1 - (1 - \mu_{2}^{L} )^{\lambda } )^{{\frac{{\omega_{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } \right)} \right.} \right.^{{\frac{1}{\lambda }}} ,} \right. \\ & \left. {\left. { \quad \quad 1 - \left( {1 - (1 - (1 - \mu_{1}^{U} )^{\lambda } )^{{\frac{{\omega_{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} (1 - (1 - \mu_{2}^{U} )^{\lambda } )^{{\frac{{\omega_{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } \right)^{{\frac{1}{\lambda }}} } \right]} \right\}, \\ & \quad \quad \left\{ {\left[ {\left( {1 - (1 - (\nu_{1}^{L} )^{\lambda } )^{{\frac{{\omega_{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} (1 - (\nu_{2}^{L} )^{\lambda } )^{{\frac{{\omega_{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } \right)^{{\frac{1}{\lambda }}} ,} \right.} \right. \\ & \quad \quad \left. {\left. {\left. {\left. {\left( {1 - (1 - (\nu_{1}^{U} )^{\lambda } )^{{\frac{{\omega_{1} (1 + T(sd_{1} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} (1 - (\nu_{2}^{U} )^{\lambda } )^{{\frac{{\omega_{2} (1 + T(sd_{2} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } \right)^{{\frac{1}{\lambda }}} } \right]} \right\}} \right\}} \right). \\ \end{aligned}$$

So when \(n = 2,\) Theorem 4.4 also is right.

3. Suppose when \(n = k,\) Theorem 4.4 is right, then we have

$$\begin{aligned} & WGIVDHFLPGA_{\omega ,\lambda } (sd_{1} ,sd_{2} , \ldots ,sd_{k} ) = \bigcup\limits_{{(s_{{\alpha_{j} }} ,\tilde{h}_{j} ,\tilde{g}_{j} ) \in sd_{j} }} {} \\ & \quad \quad \left( {s_{{\frac{1}{\lambda }\prod\nolimits_{j = 1}^{k} {(\lambda \alpha_{j} )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } }} ,} \right.\bigcup\limits_{{[\mu_{j}^{L} ,\mu_{j}^{U} ] \in \tilde{h}_{j} ,[\nu_{j}^{L} ,\nu_{j}^{U} ] \in \tilde{g}_{j} }} {} \\ & \quad \quad \left\{ {\left\{ {\left[ {1 - \left( {1 - \prod\limits_{j = 1}^{k} {(1 - (1 - \mu_{j}^{L} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} ,1 - \left( {1 - \prod\limits_{j = 1}^{k} {(1 - (1 - \mu_{j}^{U} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right]} \right\},} \right. \\& \left. {\left. { \quad \quad \left\{ {\left[ {\left( {1 - \prod\limits_{j = 1}^{k} {(1 - (\nu_{j}^{L} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} ,\left( {1 - \prod\limits_{j = 1}^{k} {(1 - (\nu_{j}^{U} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right]} \right\}} \right\}} \right), \\ & \quad \mathop \otimes \limits_{j = 1}^{k} (\lambda sd_{j} )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} = \bigcup\limits_{{(s_{{\alpha_{j} }} ,\tilde{h}_{j} ,\tilde{g}_{j} ) \in sd_{j} }} {\left( {s_{{\prod\nolimits_{j = 1}^{k} {(\lambda \alpha_{j} )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } }} ,} \right.} \\ & \quad \bigcup\limits_{{[\mu_{j}^{L} ,\mu_{j}^{U} ] \in \tilde{h}_{j} ,[\nu_{j}^{L} ,\nu_{j}^{U} ] \in \tilde{g}_{j} }} {\left\{ {\left\{ {\left[ {\prod\limits_{j = 1}^{k} {(1 - (1 - \mu_{j}^{L} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } ,\prod\limits_{j = 1}^{k} {(1 - (1 - \mu_{j}^{U} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right]} \right\},} \right.} \\& \left. {\left. { \quad \quad \left\{ {\left[ {1 - \prod\limits_{j = 1}^{k} {(1 - (\nu_{j}^{L} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } ,1 - \prod\limits_{j = 1}^{k} {(1 - (\nu_{j}^{U} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{2} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right]} \right\}} \right\}} \right), \\ \end{aligned}$$

then when \(n = k + 1,\)

$$\begin{aligned} & WGIVDHFLPGA_{\omega ,\lambda } (sd_{1} ,sd_{2} , \ldots ,sd_{k + 1} ) = \frac{1}{\lambda }\left( {\left( {\mathop \otimes \limits_{j = 1}^{k} (\lambda sd_{j} )^{{\omega_{j} }} } \right) \otimes (\lambda sd_{k + 1} )^{{\omega_{k + 1} }} } \right) \\ & \quad = \bigcup\limits_{{(s_{{\alpha_{j} }} ,\tilde{h}_{j} ,\tilde{g}_{j} ) \in sd_{j} }} {\left( {s_{{\frac{1}{\lambda }\prod\nolimits_{j = 1}^{n} {(\lambda \alpha_{j} )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } }} ,} \right.} \bigcup\limits_{{[\mu_{j}^{L} ,\mu_{j}^{U} ] \in \tilde{h}_{j} ,[\nu_{j}^{L} ,\nu_{j}^{U} ] \in \tilde{g}_{j} }} {} \\ & \quad \quad \left\{ {\left\{ {\left[ {1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \mu_{j}^{L} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} ,1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \mu_{j}^{U} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right]} \right\}} \right., \\ & \quad \quad \left. {\left. {\left\{ {\left[ {\left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\nu_{j}^{L} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} ,\left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\nu_{j}^{U} )^{\lambda } )^{{\frac{{\omega_{j} (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{n} {\omega_{i} (1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right]} \right\}} \right\}} \right). \\ \end{aligned}$$

So, when \(n = k + 1,\) Theorem 4.4 is right too.

According to steps (1), (2), (3), we can conclude that Theorem 4.4 is right for all n.□

Appendix 4: Proof of Theorem 4.7

1. Assume that \((sd_{1}^{*} ,sd_{2}^{*} , \ldots ,sd_{n}^{*} )\) is any permutation of \((sd_{1} ,sd_{2} , \ldots ,sd_{n} ),\) then for each \(sd_{j} ,\) there exists one and only one \(sd_{k}^{*}\) such that \(sd_{j} = sd_{k}^{*}\) and vice versa. And, \(T(sd_{j} ) = T(sd_{k}^{*} ).\) Thus, based on Theorems 4.2 and 4.5, we have

$$\begin{aligned} & GIVDHFLPA_{\lambda } (sd_{1} ,sd_{2} , \ldots ,sd_{n} ) = \left( {\frac{{ \oplus_{j = 1}^{n} (1 + T(sd_{j} ))sd_{j}^{\lambda } }}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}} \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} = \left( {\frac{{ \oplus_{k = 1}^{n} (1 + T(sd_{k}^{*} ))sd_{k}^{*\lambda } }}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}} \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad = GIVDHFLPA_{\lambda } (sd_{1}^{*} ,sd_{2}^{*} , \ldots ,sd_{n}^{*} ). \\ & GIVDHFLPGA_{\lambda } (sd_{1} ,sd_{2} , \ldots ,sd_{n} ) = \frac{1}{\lambda }\left( {\mathop \otimes \limits_{j = 1}^{n} (\lambda sd_{j} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } \right) \\ & \quad = \frac{1}{\lambda }\left( {\mathop \otimes \limits_{k = 1}^{n} (\lambda sd_{k}^{*} )^{{\frac{{1 + T(sd_{k}^{*} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } \right) = GIVDHFLPGA_{\lambda } (sd_{1}^{*} ,sd_{2}^{*} , \ldots ,sd_{n}^{*} ). \\ \end{aligned}$$

2. Since \(sd_{j} = sd\) for all \(j = 1,2, \ldots ,n,\) thus

$$\begin{aligned} & GIVDHFLPA_{\lambda } (sd_{1} ,sd_{2} , \ldots ,sd_{n} ) = \bigcup\limits_{{(s_{\alpha } ,\tilde{h},\tilde{g}) \in sd}} {\left( {s_{\alpha } ,\bigcup\limits_{{[\mu^{L} ,\mu^{U} ] \in \tilde{h},[\nu^{L} ,\nu^{U} ] \in \tilde{g}}} {\left\{ {\{ [\mu^{L} ,\mu^{U} ]\} ,\{ [\nu^{L} ,\nu^{U} ]\} } \right\}} } \right)} \\ & \quad = sd = GIVDHFLPGA_{\lambda } (sd_{1} ,sd_{2} , \ldots ,sd_{n} ). \\ \end{aligned}$$

3. Let \(sd^{ - } = (s_{\alpha }^{ - } ,\tilde{h}^{ - } ,\tilde{g}^{ - } ),sd^{ + } = \langle s_{\alpha }^{ + } ,\tilde{h}^{ + } ,\tilde{g}^{ + } \rangle ,\) where \(s_{\alpha }^{ - } = \min_{j} (s_{{\alpha_{j} }} ),s_{\alpha }^{ + } = \max_{j} (s_{{\alpha_{j} }} ),\)

$$\begin{aligned} \tilde{h}^{ - } & = \bigcup\limits_{{[\mu_{j}^{L} ,\mu_{j}^{U} ] \in \tilde{h}_{j} }} {\{ [\mu^{L - } ,\mu^{U - } ]\} } = \bigcup\limits_{{[\mu_{j}^{L} ,\mu_{j}^{U} ] \in \tilde{h}_{j} }} {\left\{ {\left[ {\mathop {\hbox{min} }\limits_{1 \le j \le n} \mu_{j}^{L} ,\mathop {\hbox{min} }\limits_{1 \le j \le n} \mu_{j}^{U} } \right]} \right\}} , \\ \tilde{h}^{ + } & = \bigcup\limits_{{[\mu_{j}^{L} ,\mu_{j}^{U} ] \in \tilde{h}_{j} }} {\{ [\mu^{L + } ,\mu^{U + } ]\} } = \bigcup\limits_{{[\mu_{j}^{L} ,\mu_{j}^{U} ] \in \tilde{h}_{j} }} {\left\{ {\left[ {\mathop {\hbox{max} }\limits_{1 \le j \le n} \mu_{j}^{L} ,\mathop {\hbox{max} }\limits_{1 \le j \le n} \mu_{j}^{U} } \right]} \right\}} , \\ \tilde{g}^{ - } & = \bigcup\limits_{{[\nu_{j}^{L} ,\nu_{j}^{U} ] \in \tilde{g}_{j} }} {\{ [\nu^{L - } ,\nu^{U - } ]\} } = \bigcup\limits_{{[\nu_{j}^{L} ,\nu_{j}^{U} ] \in \tilde{g}_{j} }} {\left\{ {\left[ {\mathop {\hbox{max} }\limits_{1 \le j \le n} \nu_{j}^{L} ,\mathop {\hbox{max} }\limits_{1 \le j \le n} \nu_{j}^{U} } \right]} \right\}} , \\ \tilde{g}^{ + } & = \bigcup\limits_{{[\nu_{j}^{L} ,\nu_{j}^{U} ] \in \tilde{g}_{j} }} {\{ [\nu^{L + } ,\nu^{U + } ]\} } = \bigcup\limits_{{[\nu_{j}^{L} ,\nu_{j}^{U} ] \in \tilde{g}_{j} }} {\left\{ {\left[ {\mathop {\hbox{min} }\limits_{1 \le j \le n} \nu_{j}^{L} ,\mathop {\hbox{min} }\limits_{1 \le j \le n} \nu_{j}^{U} } \right]} \right\}} , \\ \end{aligned}$$

for all \(j = 1,2, \ldots ,n,\) we have

$$\begin{aligned} & \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu^{L + } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} + \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu^{U + } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad \ge \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu_{j}^{L} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} + \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu_{j}^{U} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad \ge \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu^{L - } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} + \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu^{U - } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} , \\ \end{aligned}$$

and mean while

$$\begin{aligned} & \left( {1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu^{L - } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right) + \left( {1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu^{U - } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right) \\ & \quad \ge \left( {1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu_{j}^{L} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right) + \left( {1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu_{j}^{U} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right) \\ & \quad \ge \left( {1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu^{L + } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right) + \left( {1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu^{U + } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right), \\ \end{aligned}$$

so we have

$$\begin{aligned} & \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu_{j}^{L} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} + \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu_{j}^{U} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad \quad - \left( {1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu_{j}^{L} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right) - \left( {1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu_{j}^{U} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right) \\ & \quad \le \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu^{L + } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} + \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu^{U + } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad \quad - \left( {1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu^{L + } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right) - \left( {1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu^{U + } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right). \\ \end{aligned}$$

And

$$\begin{aligned} & \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu_{j}^{L} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} + \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu_{j}^{U} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad \quad - \left( {1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu_{j}^{L} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right) - \left( {1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu_{j}^{U} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right) \\ & \quad \ge \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu^{L - } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} + \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu^{U - } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad \quad - \left( {1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu^{L - } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right) - \left( {1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu^{U - } )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} } \right). \\ \end{aligned}$$

Obviously, \(max_{j} (s_{{\alpha_{j} }} ) \ge s_{{\left( {\sum\nolimits_{j = 1}^{n} {\omega_{j} (\alpha_{j} )^{\lambda } } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} }} \ge \min_{j} (s_{{\alpha_{j} }} ),\) then according to Definitions 3.3, 3.5 and Theorem 4.2, we have\(sd^{ + } \ge GIVDHFLPA_{\lambda } (sd_{1} ,sd_{2} , \ldots ,sd_{n} ) \ge sd^{ - } .\)

Similarly, according to Definitions 3.3, 3.5 and Theorem 4.5, we have

$$sd^{ + } \ge GIVDHFLPGA_{\lambda } (sd_{1} ,sd_{2} , \ldots ,sd_{n} ) \ge sd^{ - } ,$$

which completes the proof.□

Appendix 5: Proof of Theorem 4.8

Based on Lemma 4.1, we have

$$\begin{aligned} \prod\limits_{j = 1}^{n} {\alpha_{j}^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } & \le \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}\alpha_{j} } , \\ \prod\limits_{j = 1}^{n} {(\mu_{j}^{L} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } & \le \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}\mu_{j}^{L} } = 1 - \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - \mu_{j}^{L} )} \\ & \le 1 - \prod\limits_{j = 1}^{n} {(1 - \mu_{j}^{L} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } , \\ \prod\limits_{j = 1}^{n} {(\mu_{j}^{U} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } & \le \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}\mu_{j}^{U} } = 1 - \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - \mu_{j}^{U} )} \\ & \le 1 - \prod\limits_{j = 1}^{n} {(1 - \mu_{j}^{U} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } , \\ \prod\limits_{j = 1}^{n} {(\nu_{j}^{L} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } & \le \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}\nu_{j}^{L} } = 1 - \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - \nu_{j}^{L} )} \\ & \le 1 - \prod\limits_{j = 1}^{n} {(1 - \nu_{j}^{L} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } , \\ \prod\limits_{j = 1}^{n} {(\nu_{j}^{U} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } & \le \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}\nu_{j}^{U} } = 1 - \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - \nu_{j}^{U} )} \\ & \le 1 - \prod\limits_{j = 1}^{n} {(1 - \nu_{j}^{U} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } . \\ \end{aligned}$$

By Definitions 3.3, 3.4 and 3.5, we have \(\otimes_{j = 1}^{n} (sd_{j}^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} ) \le \oplus_{j = 1}^{n} \left( {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}sd_{j} } \right),\) which completes the proof of Theorem 4.8. □

Appendix 6: Proof of Theorem 4.9

Based on Lemma 1, we have

$$\begin{aligned} & \prod\limits_{j = 1}^{n} {\alpha_{j}^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } = \left( {\prod\limits_{j = 1}^{n} {(\alpha_{j}^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \le \left( {\sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}\alpha_{j}^{\lambda } } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} , \\ & \prod\limits_{j = 1}^{n} {(\mu_{j}^{L} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } = \left( {\prod\limits_{j = 1}^{n} {((\mu_{j}^{L} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad \le \left( {\sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(\mu_{j}^{L} )^{\lambda } } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} = \left( {1 - \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - (\mu_{j}^{L} )^{\lambda } )} } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad \le \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu_{j}^{L} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} , \\ & \prod\limits_{j = 1}^{n} {(\mu_{j}^{U} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } = \left( {\prod\limits_{j = 1}^{n} {((\mu_{j}^{U} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \le \left( {\sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(\mu_{j}^{U} )^{\lambda } } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad = \left( {1 - \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - (\mu_{j}^{U} )^{\lambda } )} } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \le \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\mu_{j}^{U} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} , \\ & \quad \quad 1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu_{j}^{L} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \le 1 - \left( {1 - \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - (1 - \nu_{j}^{L} )^{\lambda } )} } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad = 1 - \left( {\sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - \nu_{j}^{L} )^{\lambda } } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \le 1 - \left( {\prod\limits_{j = 1}^{n} {(1 - \nu_{j}^{L} )^{{\frac{{\lambda (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} = 1 - \prod\limits_{j = 1}^{n} {(1 - \nu_{j}^{L} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } , \\ & \quad \quad 1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \nu_{j}^{U} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \le 1 - \left( {1 - \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - (1 - \nu_{j}^{U} )^{\lambda } )} } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad = 1 - \left( {\sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - \nu_{j}^{U} )^{\lambda } } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \le 1 - \left( {\prod\limits_{j = 1}^{n} {(1 - \nu_{j}^{U} )^{{\frac{{\lambda (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} = 1 - \prod\limits_{j = 1}^{n} {(1 - \nu_{j}^{U} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } . \\ \end{aligned}$$

By Theorems 4.3 and 4.6, we have \(\otimes_{j = 1}^{n} (sd_{j}^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} ) \le \left( { \oplus_{j = 1}^{n} \left( {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}sd_{j}^{\lambda } } \right)} \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} ,\) which completes the proof of Theorem 4.9. □

Appendix 7: Proof of Theorem 4.10

$$\begin{aligned} & \frac{1}{\lambda }\prod\nolimits_{j = 1}^{n} {(\lambda \alpha_{j} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } \le \frac{1}{\lambda }\sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(\lambda \alpha_{j} )} = \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}\alpha_{j} } , \\ & 1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \mu_{j}^{L} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \le 1 - \left( {1 - \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - (1 - \mu_{j}^{L} )^{\lambda } )} } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad = 1 - \left( {\sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - \mu_{j}^{L} )^{\lambda } } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \le 1 - \left( {\prod\limits_{j = 1}^{n} {(1 - \mu_{j}^{L} )^{{\frac{{\lambda (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad = 1 - \prod\limits_{j = 1}^{n} {(1 - \mu_{j}^{L} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } , \\ & 1 - \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (1 - \mu_{j}^{U} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \le 1 - \left( {1 - \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - (1 - \mu_{j}^{U} )^{\lambda } )} } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad = 1 - \left( {\sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - \mu_{j}^{U} )^{\lambda } } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \le 1 - \left( {\prod\limits_{j = 1}^{n} {(1 - \mu_{j}^{U} )^{{\frac{{\lambda (1 + T(sd_{j} ))}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} = 1 - \prod\limits_{j = 1}^{n} {(1 - \mu_{j}^{U} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } , \\ & \prod\limits_{j = 1}^{n} {(\nu_{j}^{L} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } = \left( {\prod\limits_{j = 1}^{n} {((\nu_{j}^{L} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \le \left( {\sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(\nu_{j}^{L} )^{\lambda } } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad = \left( {1 - \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - (\nu_{j}^{L} )^{\lambda } )} } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \le \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\nu_{j}^{L} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} , \\ & \prod\limits_{j = 1}^{n} {(\nu_{j}^{U} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } = \left( {\prod\limits_{j = 1}^{n} {((\nu_{j}^{U} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \le \left( {\sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(\nu_{j}^{U} )^{\lambda } } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \\ & \quad = \left( {1 - \sum\limits_{j = 1}^{n} {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}(1 - (\nu_{j}^{U} )^{\lambda } )} } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} \le \left( {1 - \prod\limits_{j = 1}^{n} {(1 - (\nu_{j}^{U} )^{\lambda } )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \lambda }} \right. \kern-0pt} \lambda }}} . \\ \end{aligned}$$

Thus, we have \(\frac{1}{\lambda }\left( { \otimes_{j = 1}^{n} ((\lambda sd_{j} )^{{\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}}} )} \right) \le \oplus_{j = 1}^{n} \left( {\frac{{1 + T(sd_{j} )}}{{\sum\nolimits_{i = 1}^{n} {(1 + T(sd_{i} ))} }}sd_{j} } \right),\) which completes the proof of Theorem 4.10. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Liang, C. & Zhang, J. Multiple attribute group decision making based on generalized power aggregation operators under interval-valued dual hesitant fuzzy linguistic environment. Int. J. Mach. Learn. & Cyber. 7, 1147–1193 (2016). https://doi.org/10.1007/s13042-015-0445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-015-0445-3

Keywords

Navigation