Skip to main content

Advertisement

Log in

New concepts of vague graphs

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The concept of vague graph was introduced by Ramakrishna (Int J Comput Cognit 7:51–58, 2009). Since the vague models give more precision, flexibility, and compatibility to the system as compared to the classical and fuzzy models, in this paper, the concept of energy of fuzzy graph is extended to the energy of a vague graph. It has many applications in physics, chemistry, computer science, and other branches of mathematics. We define adjacency matrix, degree matrix, laplacian matrix, spectrum, and energy of a vague graph in terms of their adjacency matrix. The spectrum of a vague graph appears in physics statistical problems, and combinatorial optimization problems in mathematics. Also, the lower and upper bounds for the energy of a vague graph are also derived. Finally, we give some applications of energy in vague graph and other sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akram M, Gani N, Borumand Saeid A (2014) Vague hypergraphs. J Intell Fuzzy Syst 26:647–653

  2. Akram M, Feng F, Sarwar S, Jun YB (2014) Certain types of vague graphs. Univ Politeh Buchar Sci Bull Ser A 76(1):141–154

    MathSciNet  MATH  Google Scholar 

  3. Akram M (2011) Bipolar fuzzy graphs. Inf Sci 181:5548–5564

    Article  MathSciNet  MATH  Google Scholar 

  4. Akram M, Dudek WA (2012) Regular bipolar fuzzy graphs. Neural Comput Appl 1:197–205

    Article  Google Scholar 

  5. Akram M (2013) Bipolar fuzzy graphs with applications. Knowl Based Syst 39:1–8

    Article  MATH  Google Scholar 

  6. Anjali N, Mathew S (2013) Energy of a fuzzy graph. Ann Fuzzy Math Inform 8(3):455–465

    MathSciNet  MATH  Google Scholar 

  7. Balaban AT (1976) Chemical application of graph theory. Academic Press, London

    Google Scholar 

  8. Brualdi RA, Cvetkovic D (2008) A combinatorial approach to matrix theory and it’s application. CRC Press, Boca Raton

    Book  Google Scholar 

  9. Deepa G, Praba B, Chandrasekaran VM (2015) Max–Min intuitionistic fuzzy matrix of an intuitionistic fuzzy graph. Int J Pure Appl Math 98(3):375–387

    Article  MATH  Google Scholar 

  10. Gau WL, Buehrer DJ (1993) Vague sets. IEEE Trans Syst Man Cybern 23(2):610–614

    Article  MATH  Google Scholar 

  11. Gutman I (1978) The energy of a graph. Ber Math Stat Sekt Forsch Graz 103:1–22

    MATH  Google Scholar 

  12. Gutman I (2001) The energy of a graph: old and new results. In: Betten A, Kohner A, Laue R, Wassermann A (eds) Algebraic combinatorics and applications. Springer, Berlin, pp 196–211

    Chapter  Google Scholar 

  13. Harary F (1972) Graph theory, 3rd edn. Addison-Wesley, Reading

    MATH  Google Scholar 

  14. Kauffman A (1973) Introduction a la Theorie des Sous-Emsembles Flous, vol 1. Masson et Cie

  15. Liu H, Lu M, Tian F (2007) Some upper bounds for the energy of graphs. J Math Chem 42:377–386

    Article  MathSciNet  Google Scholar 

  16. Mordeson JN (1993) Fuzzy line graphs. Pattern Recognit Lett 14:381–384

    Article  MATH  Google Scholar 

  17. Molodtsov D (1999) Soft set theory-first results. Comput Math Appl 37:19–31

    Article  MathSciNet  MATH  Google Scholar 

  18. Pal M, Rashmanlou H (2013) Irregular interval-valued fuzzy graphs. Ann Pure Appl Math 3(1):56–66

    Google Scholar 

  19. Praba B, Chandrasekaran VM, Deepa G (2014) Energy of an intuitionistic fuzzy graph. Ital J Pure Appl Math 32:431–444

    MathSciNet  MATH  Google Scholar 

  20. Rosenfeld A (1975) Fuzzy graphs. In: Zadeh LA, Fu KS, Shimura M (eds) Fuzzy sets and their applications. Academic Press, New York, pp 77–95

  21. Ramakrishna N (2009) Vague graphs. Int J Comput Cognit 7:51–58

    Google Scholar 

  22. Rashmanlou H, Pal M (2013) Antipodal interval-valued fuzzy graphs. Int J Appl Fuzzy Sets Artif Intell 3:107–130

    Google Scholar 

  23. Rashmanlou H, Pal M (2013) Balanced interval-valued fuzzy graph. J Phys Sci 17:43–57

    MathSciNet  Google Scholar 

  24. Rashmanlou H, Samanta S, Pal M, Borzooei RA (2015) A study on bipolar fuzzy graphs. J Intell Fuzzy Syst 28:571–580

    MathSciNet  MATH  Google Scholar 

  25. Rashmanlou H, Jun YB (2013) Complete interval-valued fuzzy graphs. Ann Fuzzy Math Inform 6(3):677–687

    MathSciNet  MATH  Google Scholar 

  26. Rashmanlou H, Samanta S, Pal M, Borzooei RA (2015) Bipolar fuzzy graphs with categorical properties. Int J Comput Intell Syst 8(5):808–818

    Article  MATH  Google Scholar 

  27. Samanta S, Pal M (2011) Fuzzy tolerance graphs. Int J Latest Trend Math 1(2):57–67

    Google Scholar 

  28. Samanta S, Pal M (2011) Fuzzy threshold graphs. CiiT Int J Fuzzy Syst 3(12):360–364

    Google Scholar 

  29. Samanta S, Pal M, Pal A (2014) New concepts of fuzzy planar graph. Int J Adv Res Artif Intell 3(1):52–59

    Google Scholar 

  30. Samanta S, Pal M (2013) Fuzzy k-competition graphs and p-competition fuzzy graphs. Fuzzy Eng Inf 5(2):191–204

    Article  MathSciNet  Google Scholar 

  31. Samanta S, Pal M (2012) Irregular bipolar fuzzy graphs. Int J Appl Fuzzy Sets 2:91–102

    Google Scholar 

  32. Shao J, Gong F, Du Z (2011) Extremal energies of weighted trees and forests with fixed total weight sum. MATCH Commun Chem 66:879–890

    MathSciNet  MATH  Google Scholar 

  33. Singh PK, Aswani Kumar C (2014) Bipolar fuzzy graph representation of concept lattice. Inf Sci 288:437–448

  34. Singh PK, Aswani Kumar C, Li J (2015) Knowledge representation using interval-valued fuzzy formal concept lattice. Soft Comput. doi:10.1007/s00500-015-1600-1

  35. Singh PK, Aswani Kumar C, Li J (2014) Concepts reduction in formal concept analysis with fuzzy setting using Shannon entropy. Int J Mach Learn Cybern. doi:10.1007/s13042-014-0313-6

  36. Yang HL, Li SG, Wang WH, Lu Y (2013) Notes on bipolar fuzzy graphs. Inf Sci 242:113–121

    Article  MathSciNet  MATH  Google Scholar 

  37. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  38. Zadeh LA (1971) Similarity relations and fuzzy ordering. Inf Sci 3:177–200

    Article  MathSciNet  MATH  Google Scholar 

  39. Zadeh LA (2008) Is there a need for fuzzy logic? Inf Sci 178:2751–2779

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are thankful to all the reviewers, the Associate Editor, and the Editor-in-Chief of the journal for their important suggestions to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Rashmanlou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzooei, R.A., Rashmanlou, H. New concepts of vague graphs. Int. J. Mach. Learn. & Cyber. 8, 1081–1092 (2017). https://doi.org/10.1007/s13042-015-0475-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-015-0475-x

Keywords

Mathematics Subject Classification

Navigation