Skip to main content
Log in

Fuzzy soft subspace clustering method for gene co-expression network analysis

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Gene expression clustering methods for building gene co-expression networks suffer greatly from the biological complexity of cells. This paper proposes a fuzzy soft subspace clustering method for detecting overlapped clusters of locally co-expressed genes that may participate in multiple cellular processes and take on different biological functions. Process-specific cluster subspaces and interactions among different gene clusters can be extracted by this method, providing useful information for gene co-expression networks analysis. Experiments on the yeast cell cycle benchmark microarray data have shown that this method is effective in extracting underlying biological relationships between genes, and enhancing gene co-expression network inference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eason G, Noble B, Sneddon IN (1955) On certain integrals of Lipschitz-Hankel type involving products of Bessel functions. Phil Trans R Soc Lond A247:529–551

    Article  MathSciNet  MATH  Google Scholar 

  2. D’haeseleer P, Liang S, Somogyi R (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinfromatics 16(8):707–726

    Article  Google Scholar 

  3. Horvath S, Dong J (2008) Geometric Interpretation of gene coexpression network analysis. PLoS Comput Biol 4(8):e1000117

    Article  MathSciNet  Google Scholar 

  4. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cells functional organization. Nat Rev Genet 5:101–113

    Article  Google Scholar 

  5. Petti AA, Church GM (2005) A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae. Genome Res 15:1298–1306

    Article  Google Scholar 

  6. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. PNAS 95(25):14863–14868

    Article  Google Scholar 

  7. Ge H, Liu Z, Church GM, Vidal M (2003) Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet 33:15–16

    Article  Google Scholar 

  8. Dong J, Horvath S (2007) Understanding network concepts in modules. BMC Syst Biol 1(24):1–20

    Google Scholar 

  9. Mjolsness E, Mann T, Castaño R, Wold B (2000) From coexpression to coregulation: an approach to inferring transcriptional regulation among gene classes from large-scale expression data. In: Solla SA, Leen TK, Muller KR (eds) Advances in Neural Information Processing Systems 12. MIT Press, Cambridge, MA, pp 928–934

  10. Arnone MI, Davidson EH (1997) he hardwiring of development: organization and function of genomic regulatory systems. Development 124:1851–1864

    Google Scholar 

  11. Miklos GL, Rubin GM (1996) The role of the genome project in determining gene function: insights from model organisms. Cell 86(4):521–529

    Article  Google Scholar 

  12. Candillier L, Tellier I, Torre F, Bousquet O (2005) SSC: statistical subspace clustering. MLDM 2005:100–109

    Google Scholar 

  13. Ding C, Li T (2007) Adaptive dimension reduction using discriminant analysis and k-means clustering. In: Proceedings of the 24th international conference on machine learning

  14. Kailing K, Kriegel HP, Kröger P (2004) Density-connected subspace clustering for high-dimensional data. In: Proceedings of 4th SIAM international conference on data mining, pp 246–257

  15. Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE ACM Trans Comput Biol Bioinf 1:24–45

    Article  Google Scholar 

  16. Parsons L, Haque E, Liu H (2004) Subspace clustering for high dimensional data: a review. SIGKDD Explor 6(1):90–105

    Article  Google Scholar 

  17. Prelic A, Prelic S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9):1122–1129

    Article  Google Scholar 

  18. Wang H, Chu F, Fan W, Yu PS, Pei J (2004) A fast algorithm for subspace clustering by pattern similarity. In: SSDBM, pp 51–60

  19. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum, New York

    Book  MATH  Google Scholar 

  20. Woolf PJ, Wang Y (2000) A fuzzy logic approach to analyzing gene expression data. Physiol Genomics 3:9–15

    Google Scholar 

  21. Gasch AP, Eisen MB (2002) Exploring the conditional coregulation of yeast gene expression through fuzzy K-means clustering. Genome Biol 3:1–22

    Article  Google Scholar 

  22. Dembélé D, Kastner P (2003) Fuzzy C-means method for clustering microarray data. Bioinfromatics 19(8):973–980

    Article  Google Scholar 

  23. Wang Q, Ye YM, Huang ZX (2008) Fuzzy k-means with variable weighting in high dimensional data analysis. In: The ninth international conference on web-age information management, pp 365–372

  24. Chen Y, Church GM (2000) Biclustering of expression data. ISMB, pp 93–103

  25. Getz G, Levine E, Domany E (2002) Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci USA 97(22):12079–12084

    Article  Google Scholar 

  26. Lazzeroni L, Owen A (2002) Plaid models for gene expression data. Stat Sin 12(1):61–86

    MathSciNet  MATH  Google Scholar 

  27. Yang J, Wang W, Wang H, Yu PS (2002) delta-cluster: capturing subspace correlation in a large data set. ICDE 2002:517–528

    Google Scholar 

  28. Cho H, Dhillon IS (2008) Coclustering of human cancer microarrays using minimum sum-squared residue coclustering. IEEE ACM Trans Comput Biol Bioinf 5(3):385–400

    Article  Google Scholar 

  29. Jahangheer SS, Mohammed Y (2009) Fuzzy-adaptive-subspace-iteration-based two-way clustering of microarray data. IEEE ACM Trans Comput Biol Bioinf 6(2):244–259

    Article  Google Scholar 

  30. Desarbo WS, Carroll JD, Clark LA, Green PE (1984) Synthesized clustering: a method for amalgamating clustering bases with differential weighting variables. Psychometrika 49:57–78

    Article  MathSciNet  MATH  Google Scholar 

  31. Friedman JH, Meulman JJ (2004) Clustering objects on subsets of attributes. J Roy Stat Soc Ser B 66(4):815-849

    Article  MathSciNet  MATH  Google Scholar 

  32. Huang JZ, Ng MK, Rong H, Li Z (2005) Automated variable weighting in k-means type clustering. IEEE Trans PAMI 27(5):1–12

    Article  Google Scholar 

  33. Jing L, Ng MK, Huang JZ (2007) An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE TKDE 19(8):1–16

    Google Scholar 

  34. Hall LO, Ozyurt IB, Bezdek JC (1999) Clustering with a genetically optimized approach. IEEE Trans Evol Comput 3(2):103–112

    Article  Google Scholar 

  35. Nasser S, Alkhaldi R, Vert G (2006) A modified fuzzy K-means clustering using expectation maximization. In: IEEE international conference on fuzzy systems Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, vol 86, no 4, pp 16–21, July 2006

  36. Qu Y, Xu S (2004) Supervised cluster analysis for microarray data based on multivariate Gaussian mixture. Bioinformatics 20(12):1905–1913

    Article  Google Scholar 

  37. Yeung KY, Fraley C, Murua A, Raftery E, Ruzzo WL (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17(10):977–987

    Article  Google Scholar 

  38. Zhang B, Horvath S (2005) General framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4(1):1–45

    Article  MathSciNet  MATH  Google Scholar 

  39. Cho RJ, Campbell M, Winzeler E, Steinmets L, Conway A, Wodicka L, Wolfsberg T, Gabrielian A, Landsman D, Lockhart D, Davis R (1998) A genomi-wide transcriptional analysis of the mitotic cell-cycle. Mol Cell 2:65–73

    Article  Google Scholar 

  40. You ZH, Zhu L, Zheng CH, Yu HJ, Deng SP, Ji Z (2014) Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set. BMC Bioinform 15(Suppl 15):S9

    Article  Google Scholar 

  41. You ZH, Yu JZ, Zhu L, Li S, Wen ZK (2014) A Mapreduce based parallel SVM for large scale predicting protein-protein interactions. Neurocomputing 145:37–43

    Article  Google Scholar 

  42. You ZH, Lei YK, Zhu L, Xia JF, Wang B (2013) Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis. BMC Bioinform 14(Suppl 8):S10

    Article  Google Scholar 

  43. Du Z, Wang Y, Ji Z (2008) PK-means: a new algorithm for gene clustering. Comput Biol Chem 32(4):243–247

    Article  MATH  Google Scholar 

  44. Wang XZ, Ashfaq RAR, Fu AM (2015) Fuzziness based sample categorization for classifier performance improvement. J Intell Fuzzy Syst 29(3):1185–1196

    Article  MathSciNet  Google Scholar 

  45. Wang XZ, Xing HJ, Li Y, Hua Q, Dong CR, Pedrycz W (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654

    Article  Google Scholar 

  46. Wang XZ (2015) Uncertainty in learning from big data-editorial. J Intell Fuzzy Syst 28(5):2329–2330

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by China Postdoctoral Science Foundation (2015M572361) and National Natural Science Foundations of China (61503252 and 61170040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Chen, G. Fuzzy soft subspace clustering method for gene co-expression network analysis. Int. J. Mach. Learn. & Cyber. 8, 1157–1165 (2017). https://doi.org/10.1007/s13042-015-0486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-015-0486-7

Keywords

Navigation