Skip to main content
Log in

A robust density peaks clustering algorithm using fuzzy neighborhood

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The density peaks (DP) clustering approach, a novel density-based clustering algorithm, detects clusters with arbitrary shape. However, this method uses a crisp neighborhood relation to calculate local density. It cannot identify the different values of the neighborhood membership degrees of the points with respect to different distances from core point. The proposed FN-DP (fuzzy neighborhood density peaks) clustering algorithm uses fuzzy neighborhood relation to define the local density in FJP (fuzzy joint points) algorithm. The proposed algorithm integrates the speed of DP clustering algorithm with the robustness of FJP algorithm. The experimental results illustrate the superior performance of our algorithm compared with the DP clustering approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yu Z, Li L, Liu J, Zhang J, Han G (2015) Adaptive noise immune cluster ensemble using affinity propagation. IEEE Trans Knowl Data Eng 27(12):3176–3189

    Article  Google Scholar 

  2. MacQueen JB (1967) Some methods for classification and analysis of multivariate observation. In: Proceedings of the fifth Berkeley symposium on mathematical statistics probability, vol 1, No. 14, pp 281–297

    MathSciNet  MATH  Google Scholar 

  3. Huang Z (1998) Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min Knowl Disc 2(3):283–304

    Article  Google Scholar 

  4. Backer E, Jain AK (1981) A clustering performance measure based on fuzzy set decomposition. IEEE Trans Pattern Anal Mach Intell 1:66–75

    Article  MATH  Google Scholar 

  5. Pal NR, Bezdek JC (1995) On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 3(3):370–379

    Article  Google Scholar 

  6. Wishart D (1969) Mode analysis: a generalization of nearest neighbour which reduces chaining effects. In: Proceedings of the colloquium in numerical taxonomy

  7. Ester M, Kriegel HP, Sander J, Xu XW (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of second international conference on knowledge discovery data mining, vol 96, No. 34, pp 226–231

    Google Scholar 

  8. Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) OPTICS: ordering points to identify the clustering structure. In: Proceedings of ACM SIGMOD Conference, vol 28, No. 2, pp 49–60

    Article  Google Scholar 

  9. Hinneburg A, Keim DA (1998) An efficient approach to clustering in large multimedia databases with noise. In: Proceedings of the fourth international conference on knowledge discovery and data mining

  10. Sander J, Ester M, Kriegel HP, Xu X (1998) Density-based clustering in spatial databases: the algorithm DBSCAN and its applications. Data Mining Knowl Discov 2(2):169–194

    Article  Google Scholar 

  11. Rodriguez A, Laio A (2014) Clustering by fast search and find of density peak. Science 344(6191):1492–1496

    Article  Google Scholar 

  12. Du M, Ding S, Jia H (2016) Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowl-Based Syst 99:135–145

    Article  Google Scholar 

  13. Liang Z, Chen P (2016) Delta-density based clustering with a divide-and-conquer strategy: 3DC clustering. Pattern Recognit Lett 73:52–59

    Article  Google Scholar 

  14. Škrjanc I (2015) Evolving fuzzy-model-based design of experiments with supervised hierarchical clustering. IEEE Trans Fuzzy Syst 23(4):861–871

    Article  Google Scholar 

  15. Yu Z, Chen H, You J, Liu J, Wong HS, Hana G, Li L (2015) Adaptive fuzzy consensus clustering framework for clustering analysis of cancer data. IEEE/ACM Trans Comput Biol Bioinform 12(4):887–901

    Article  Google Scholar 

  16. Wu CH, Ouyang CS, Chen LW, Lu LW (2015) A new fuzzy clustering validity index with a median factor for centroid-based clustering. IEEE Trans Fuzzy Syst 23(3):701–718

    Article  Google Scholar 

  17. Hu L, Chan KC (2016) Fuzzy clustering in a complex network based on content relevance and link structures. IEEE Trans Fuzzy Syst 24(2):456–470

    Article  Google Scholar 

  18. Wang Y, Chen L, Mei JP (2014) Incremental fuzzy clustering with multiple medoids for large data. IEEE Trans Fuzzy Syst 22(6):1557–1568

    Article  Google Scholar 

  19. Zheng Y, Jeon B, Xu D, Wu QM, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):961–973

    Google Scholar 

  20. Klawonn F, Kruse R, Winkler R (2015) Fuzzy clustering: more than just fuzzification. Fuzzy Sets Syst 281:272–279

    Article  MathSciNet  MATH  Google Scholar 

  21. He YL, Wang XZ, Huang JZ (2016) Fuzzy nonlinear regression analysis using a random weight network. Inf Sci 364:222–240

    Article  Google Scholar 

  22. Nasibov EN, Ulutagay G (2007) A new unsupervised approach for fuzzy clustering. Fuzzy Sets Syst 158:2118–2133

    Article  MathSciNet  MATH  Google Scholar 

  23. Nasibov EN (2008) A robust algorithm for solution of the fuzzy clustering problem on the basis of the fuzzy joint points method. Cybern Syst Anal 44(1):7–17

    Article  MATH  Google Scholar 

  24. Nasibov EN, Ulutagay G (2009) Robustness of density-based clustering methods with various neighborhood relations. Fuzzy Sets Syst 160:3601–3615

    Article  MathSciNet  MATH  Google Scholar 

  25. Ulutagay G, Nasibov EN (2010) Influence of transitive closure complexity in FJP-based clustering algorithms. Turkish J Fuzzy Syst 1(1):3–20

    Google Scholar 

  26. Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295(1):395–406

    Article  Google Scholar 

  27. Xia Z, Wang X, Sun X, Liu Q, Xiong N (2016) Steganalysis of LSB matching using differences between nonadjacent pixels. Multimed Tools Appl 75(4):1947–1962

    Article  Google Scholar 

  28. Yu Z, Zhu X, Wong HS, You J, Zhang J, Han G (2016) Distribution-based cluster structure selection. IEEE Trans Cybern. doi:10.1109/TCYB.2016.2569529

    Google Scholar 

  29. Zhang Y, Sun X, Wang B (2016) Efficient Algorithm for K-barrier coverage based on integer linear programming. China Commu 13(7):16–23

    Article  Google Scholar 

  30. Gu B, Sheng VS, Wang Z, Ho D, Osman S, Li S (2015) Incremental learning for ν-support vector regression. Neural Netw 67:140–150

    Article  Google Scholar 

  31. Yu Z, Luo P, You J, Wong HS, Leung H, Wu S, Zhang J, Han G (2016) Incremental semi-supervised clustering ensemble for high dimensional data clustering. IEEE Trans Knowl Data Eng 28(3):701–714

    Article  Google Scholar 

  32. Dong CR, Ng WWY, Wang XZ, Chan PPK, Yeung DS (2014) An improved differential evolution and its application to determining feature weights in similarity-based clustering. Neurocomputing 146:95–103

    Article  Google Scholar 

  33. Huang G, Song S, Gupta JND, Wu C (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44(12):2405–2417

    Article  Google Scholar 

  34. Ashfaq RAR, Wang XZ, Huang JZ, Abbas H, He YL (2017) Fuzziness based semi-supervised learning approach for intrusion detection system. Inf Sci 378:484–497

    Article  Google Scholar 

  35. Wang XZ, Wang YD, Wang LJ (2004) Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recogn Lett 25(10):1123–1132

    Article  Google Scholar 

  36. Zeng S, Yang X, Gou J, Wen J (2016) Integrating absolute distances in collaborative representation for robust image classification. CAAI Trans Intell Technol 1(2):189–196

    Article  Google Scholar 

  37. Alpert S, Galun M, Brandt A, Basri R (2012) Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans Pattern Anal Mach Intell 34(2):315–327

    Article  Google Scholar 

  38. Ma Z, Liu Q, Sun K, Zhan S (2016) A syncretic representation for image classification and face recognition. CAAI Trans Intell Technol 1(2):173–178

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China under Grant No. 61379101 and No. 61672522, the National Basic Research Program of China under Grant No. 2013CB329502, the Priority Academic Program Development of Jiangsu Higer Education Institutions (PAPD), and the Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifei Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, M., Ding, S. & Xue, Y. A robust density peaks clustering algorithm using fuzzy neighborhood. Int. J. Mach. Learn. & Cyber. 9, 1131–1140 (2018). https://doi.org/10.1007/s13042-017-0636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-017-0636-1

Keywords

Navigation