Skip to main content
Log in

A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Arrhythmia classification is crucial in electrocardiogram (ECG) based automatic cardiovascular disease diagnosis, e.g., to help prevent stroke or sudden cardiac death. However, the complex individual differences in ECG morphology make it challenging in accurately categorizing arrhythmia heartbeats. To promote robustness of the algorithm for individual differences, we propose a novel ECG arrhythmia classification method with stacked sparse auto-encoders (SSAEs) and a softmax regression (SF) model. The SSAEs is employed to hierarchically extract high-level features from huge amount of ECG data. Features are extracted automatically such that no individual difference in feature selection will bias extraction accuracy. Moreover, the input can be reconstructed completely by the features in each level of the auto-encoder. The SF is then trained to serve as a classifier for discriminating six different types of arrhythmia heartbeats. Computational experiments and comparative analyses are presented to validate the effectiveness of the theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Afkhami RG, Azarnia G, Tinati MA (2016) Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recognit Lett 70:45–51

    Article  Google Scholar 

  2. Acir N (2005) Classification of ECG beats by using a fast least square support vector machines with a dynamic programming feature selection algorithm. Neural Comput Appl 14(4):299–309

    Article  Google Scholar 

  3. Bengio Y (2009) Learning deep architectures for AI. Foundations and trends. Mach Learning 2(1):1–127

    Article  MathSciNet  MATH  Google Scholar 

  4. Braccini G, Edenbrandt L, Lagerholm M, Peterson C, Rauer O, Rittner R, Sornmo L (1997) Self-organizing maps and Hermite functions for classification of ECG complexes. Comp Cardiol. doi:10.1109/CIC.1997.647924

    Google Scholar 

  5. Chazal P, Reilly RB (2003) Automatic classification of ECG beats using waveform shape and heart beat interval features. Proceedings of the IEEE International Conference on Acoustic, Speech and Signal (ICASSP), Hong Kong, China

  6. Dilmac S, Korurek M (2015) ECG heart beat classification method based on modified ABC algorithm. Appl. Soft Comput 36:641–655

    Article  Google Scholar 

  7. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220&nbsp

    Article  Google Scholar 

  8. Hu YZ, Palreddy S, Tompkins WJ (1997) A patient-adaptable ECG beat classifier using a mixture of experts approach. IEEE Trans Biomed Eng. doi:10.1109/10.623058

    Google Scholar 

  9. Javadi M, Arani SA, Sajedin A, Ebrahimpour R (2013) Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning. Biomed Signal Process Control 8(3):289–296

    Article  Google Scholar 

  10. Kutlu Y, Kuntalp D (2012) Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. Comput Methods Programs Biomed 105(3):257–267

    Article  Google Scholar 

  11. Khazaee A, Ebrahimzadeh A (2010) Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features. Biomed Signal Process Control 5(4):252–263

    Article  Google Scholar 

  12. Kiranyaz S, Ince T, Gabbouj M (2016) Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans Biomed Eng 63(3):664–675

    Article  Google Scholar 

  13. Linh TH, Osowski S, Stodolski M (2003) On-line heart beat recognition using Hermite polynomials and neuro-fuzzy network. IEEE Trans Instrum Meas. doi:10.1109/TIM.2003.816841

    Google Scholar 

  14. Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math Program 45(1):503–528

    Article  MathSciNet  MATH  Google Scholar 

  15. Li TY, Min Z (2016) ECG classification using wavelet packet entropy and random forests. Entropy 18(285):1–16

    Google Scholar 

  16. Minami K, Nakajima H, Toyoshima T (1999) Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Trans Biomed Eng 46(2):179–185

    Article  Google Scholar 

  17. Moody GB, Mark RG (2001) The impact of the MIT-BIH Arrhythmia Database. IEEE Eng Med Biol 20(3):45–50

    Article  Google Scholar 

  18. Melgani F, Bazi Y (2008) Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans Inf Technol Biomed 12(5):667–677

    Article  Google Scholar 

  19. Ozbay Y, Tezel G (2010) A new method for classification of ECG arrhythmias using neural network with adaptive activation function. Digit Signal Process 20(4):1040–1049

    Article  Google Scholar 

  20. Osowski S, Linh TH (2001) ECG beat recognition using fuzzy hybrid neural network. IEEE Trans Biomed Eng 48(11):1265–1271

    Article  Google Scholar 

  21. Rahhal MM, Bazi Y, Alhichri H, Alajlan N, Melgani F, Yager RR (2016) Deep learning approach for active classification of electrocardiogram signal. Inf Sci 345:340–354

    Article  Google Scholar 

  22. Sandoe E, Sigurd B (1992) Arrhythmia: a guide to clinical electrocardiology. Ann Emerg Med 21(10):1302

    Google Scholar 

  23. Ubeyli ED (2009) Statistics over features of ECG signals. Expert Syst Appl 36(5):8758–8767

    Article  Google Scholar 

  24. Wang JS, Chiang WC, Hsu YL, Yang YT (2013) ECG arrhythmia classification using a probabilistic neural network with a feature reduction method. Neuro Comput 116:38–45

    Google Scholar 

  25. Xu J, Xiang L, Liu Q, Gilmore H, Wu J, Tang J, Madabhushi A (2015) Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology image. IEEE Trans Med Imaging PP 99:1

    Google Scholar 

  26. Yu SN, Chou KT (2008) Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst Appl 34(4):2841–2846

    Article  Google Scholar 

  27. Yu SN, Chen YH (2007) Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recogn Lett 28(10):1142–1150

    Article  Google Scholar 

  28. Zidelmal Z, Amirou A, Ould-Abdeslam D, Merckle J (2013) ECG beat classification using a cost sensitive classifier. Comput Methods Programs Biomed 111(3):570–577

    Article  Google Scholar 

  29. Zeng R, Wu JZ, Shao ZH, Senhadji L, Shu HZ (2014) Qunternion softmax classifier. Electron Lett 50(25):1929–1931

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by two grants from the National Natural Science Foundation of China (61203160, 61673158) and the Natural Science Foundation of Hebei Province (F2015201112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuling Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Bai, Y., Lin, F. et al. A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression. Int. J. Mach. Learn. & Cyber. 9, 1733–1740 (2018). https://doi.org/10.1007/s13042-017-0677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-017-0677-5

Keywords

Navigation