Skip to main content

Advertisement

Log in

Mass classification of benign and malignant with a new twin support vector machine joint \({l_{2,1}}\)-norm

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Breast cancer is the second leading cause of cancer related death for women in the world, and mass is one of the most common kinds of abnormal. A mass can be either benign or malignant, the accurate diagnosis is important for early intervention and treatment. In this paper, we investigated the mass classification problem and proposed a new method for feature selection. The proposed method integrates joint \({l_{2,1}}\)-norm minimizing regularization with a nonparallel twin support vector machine, which is called TWSVML21. The \({l_{2,1}}\)-norm regularization selects features across positive and negative classes with joint sparsity, and features are selected by a ranking strategy. An iterative method is proposed to solve the involved optimization problem. Preliminary results on mass classification and several benchmark datasets showed the feasibility and effectiveness of the proposed TWSVML21 method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferlay J et al (2015) “Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012”. Int J Cancer 136(5):E359–E386

    Google Scholar 

  2. Samulski M, Karssemeijer N (2011) Optimizing case-based detection performance in a multiview CAD system for mammography. IEEE Trans Med Imaging 30(4):1001–1009

    Article  Google Scholar 

  3. Liu X, Mei M, Liu J, Hu W (2015) “Microcalcification detection in full-field digital mammograms with PFCM clustering and weighted SVM-based method”. EURASIP J Adv Signal Process 2015(1):1

    Article  Google Scholar 

  4. Tang J, Rangayyan RM, Xu J, El Naqa I, Yang Y (2009) Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans Inf Technol Biomed 13(2):236–251

    Article  Google Scholar 

  5. Eltonsy NH, Tourassi GD, Elmaghraby AS (2007) A concentric morphology model for the detection of masses in mammography. IEEE Trans Med Imaging 26(6):880–889

    Article  Google Scholar 

  6. Pereira DC, Ramos RP, Do Nascimento MZ (2014) Segmentation and detection of breast cancer in mammograms combining wavelet analysis and genetic algorithm. Comput Methods Prog Biomed 114(1):88–101

    Article  Google Scholar 

  7. Chan H-P et al (1995) Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space. Phys Med Biol 40(5):857–876

    Article  Google Scholar 

  8. Eltoukhy MM, Faye I, Samir BB (2012) A statistical based feature extraction method for breast cancer diagnosis in digital mammogram using multiresolution representation. Comput Biol Med 42(1):123–128

    Article  Google Scholar 

  9. Cheng H, Shi X, Min R, Hu L, Cai X, Du H (2006) Approaches for automated detection and classification of masses in mammograms. Patt Recognit 39(4):646–668

    Article  Google Scholar 

  10. Ganesan K, Acharya UR, Chua CK, Min LC, Abraham KT, Ng K-H (2013) Computer-aided breast cancer detection using mammograms: a review. IEEE Rev Biomed Eng 6:77–98

    Article  Google Scholar 

  11. Liu X, Tang J (2014) Mass classification in mammograms using selected geometry and texture features, and a new SVM-based feature selection method. IEEE Syst J 8(3):910–920

    Article  Google Scholar 

  12. Shmilovici A (2005) Support vector machines. In: Data mining and knowledge discovery handbook. Springer, pp 257–276

  13. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  Google Scholar 

  14. Sun B, Ng WW, Chan PP (2016) Improved sparse LSSVMS based on the localized generalization error model. Int J Mach Learn Cybern 1–9

  15. Pan X, Xu Y (2016) Two effective sample selection methods for support vector machine. J Intell Fuzzy Syst 30(2):659–670

    Article  Google Scholar 

  16. He Q, Wang X, Chen J, Yan L (2006) A parallel genetic algorithm for solving the inverse problem of support vector machines. Adv Mach Learn Cybern 871–879

  17. Wang X-Z, Lu S-X, Zhai J-H (2008) Fast fuzzy multicategory SVM based on support vector domain description. Int J Pattern Recognit Artif Intell 22(01):109–120

    Article  Google Scholar 

  18. Wang X-Z, RAR Ashfaq, Fu A-M (2015) “Fuzziness based sample categorization for classifier performance improvement. J Intell Fuzzy Syst 29(3):1185–1196

    Article  MathSciNet  Google Scholar 

  19. Hu L, Lu S, Wang X (2013) A new and informative active learning approach for support vector machine. Inf Sci 244:142–160

    Article  MathSciNet  MATH  Google Scholar 

  20. Qi Y, Zhang G (2016) Strategy of active learning support vector machine for image retrieval. IET Comput Vis 10(1):87–94

    Article  Google Scholar 

  21. Dufrenois F, Noyer JC (2015) Generalized eigenvalue proximal support vector machines for outlier description. In: 2015 International Joint Conference on Neural Networks (IJCNN), 2015, pp 1–9: IEEE

    Google Scholar 

  22. Khemchandani R, Chandra S (2009) Optimal kernel selection in twin support vector machines. Optim Lett 3(1):77–88

    Article  MathSciNet  MATH  Google Scholar 

  23. Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36(4):7535–7543

    Article  Google Scholar 

  24. Tian Y, Ju X, Qi Z, Shi Y (2014) Improved twin support vector machine. Sci China Math 57(2):417–432

    Article  MathSciNet  MATH  Google Scholar 

  25. Shao Y-H, Zhang C-H, Wang X-B, Deng N-Y (2011) Improvements on twin support vector machines. IEEE Trans Neural Netw 22(6):962–968

    Article  Google Scholar 

  26. Xu Y, Chen M, Yang Z, Li G (2016) ν-twin support vector machine with Universum data for classification. Appl Intell 44(4):956–968

    Article  Google Scholar 

  27. Xu Y, Yu J, Zhang Y (2014) KNN-based weighted rough ν-twin support vector machine. Knowl-Based Syst 71:303–313

    Article  Google Scholar 

  28. Xu Y, Yang Z, Pan X (2017) A novel twin support-vector machine with pinball loss. IEEE Trans Neural Netw Learn Syst 28(2):359–370

    Article  MathSciNet  Google Scholar 

  29. Tomar D, Agarwal S (2015) Twin support vector machine: a review from 2007 to 2014. Egypt Inf J 16(1):55–69

    Article  Google Scholar 

  30. Yang Z-M, He J-Y, Shao Y-H (2013) Feature selection based on linear twin support vector machines. Proc Comput Sci 17:1039–1046

    Article  Google Scholar 

  31. Guo J, Yi P, Wang R, Ye Q, Zhao C (2014) Feature selection for least squares projection twin support vector machine. Neurocomputing 144:174–183

    Article  Google Scholar 

  32. Bai L, Wang Z, Shao Y-H, Deng N-Y (2014) A novel feature selection method for twin support vector machine. Knowl-Based Syst 59:1–8

    Article  Google Scholar 

  33. Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J (2008) LIBLINEAR: a library for large linear classification. J Mach Learn Res 9:1871–1874

    MATH  Google Scholar 

  34. Nie F, Huang H, Cai X, Ding CH (2010) Efficient and robust feature selection via joint l 2,1-norms minimization. Adv Neural Inf Process Syst 1813–1821

  35. Tian Y-J, Ju X-C (2015) Nonparallel support vector machine based on one optimization problem for pattern recognition. J Oper Res Soc China 3(4):499–519

    Article  MathSciNet  MATH  Google Scholar 

  36. Platt JC (1999) 12 fast training of support vector machines using sequential minimal optimization. In: Advances in kernel methods, pp 185–208

  37. Andersen ED, Andersen KD (2000) The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In: High performance optimization. Springer, pp 197–232

  38. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. New York

  39. Robnik-Šikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53(1–2):23–69

    Article  MATH  Google Scholar 

  40. Huang J, Zhang T (2010) The benefit of group sparsity. Ann Stat 38(4):1978–2004

    Article  MathSciNet  MATH  Google Scholar 

  41. Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS (2012) INbreast: toward a full-field digital mammographic database. Acad Radiol 19(2):236–248

    Article  Google Scholar 

  42. Moura DC et al (2013) Benchmarking datasets for breast cancer computer-aided diagnosis (CADx). In: Iberoamerican Congress on Pattern Recognition, 2013. Springer, pp 326–333

  43. Dhungel N, Carneiro G, Bradley AP (2016) The automated learning of deep features for breast mass classification from mammograms. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2016, pp 106–114. Springer

  44. Liu X, Zeng Z (2015) A new automatic mass detection method for breast cancer with false positive reduction. Neurocomputing 152:388–402

    Article  Google Scholar 

  45. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern (6):610–621

  46. Jähne B (2002) Digital image processing. IOP Publishing

  47. Mudigonda NR, Rangayyan RM, Desautels JL (2000) Gradient and texture analysis for the classification of mammographic masses. IEEE Trans Med Imaging 19(10):1032–1043

    Article  Google Scholar 

  48. Li H, Kallergi M, Clarke L, Jain V, Clark R (1995) Markov random field for tumor detection in digital mammography. IEEE Trans Med Imaging 14(3):565–576

    Article  Google Scholar 

  49. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27

    Google Scholar 

  50. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238

    Article  Google Scholar 

  51. Yang Y, Ma Z, Hauptmann AG, Sebe N (2013) Feature selection for multimedia analysis by sharing information among multiple tasks. IEEE Trans Multimed 15(3):661–669

    Article  Google Scholar 

  52. Metz C (2006) ROCKIT 1.1 B2 (beta version for Windows operating system) [Computer software]. University of Chicago, Chicago, UK. http://www-radiology.uchicago.edu/krl/KRL_ROC/software_index6.htm

  53. Gu Q, Li Z, Han J (2012) Generalized fisher score for feature selection. arXiv preprint: arXiv:1202.3725

  54. Cai X, Nie F, Huang H, Ding C (2011) Multi-class l 2,1-norm support vector machine. In: 2011 IEEE 11th International Conference on Data Mining, 2011, pp 91–100: IEEE

  55. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422

    Article  MATH  Google Scholar 

  56. Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148(3):839–843

    Article  Google Scholar 

  57. Cevikalp H (2016) Best fitting hyperplanes for classification. IEEE Trans Pattern Anal Mach Intell

  58. Peng X (2011) TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recognit 44(10–11):2678–2692

    Article  MATH  Google Scholar 

  59. Platt JC (1999) Fast training of support vector machines using sequential minimal optimization. In: Advances in kernel methods, pp 185–208

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Nos. 61403287, 61472293, 31201121, 61572381, 61273303), China Postdoctoral Science Foundation (No. 2014M552039) and the Natural Science Foundation of Hubei Province (No. 2014CFB288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhu, T., Zhai, L. et al. Mass classification of benign and malignant with a new twin support vector machine joint \({l_{2,1}}\)-norm. Int. J. Mach. Learn. & Cyber. 10, 155–171 (2019). https://doi.org/10.1007/s13042-017-0706-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-017-0706-4

Keywords

Navigation