Skip to main content
Log in

Global stability analysis of delayed complex-valued fractional-order coupled neural networks with nodes of different dimensions

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, the delayed fractional-order complex-valued coupled neural networks (FCCNNs) with nodes of different dimensions are investigated. Firstly, stability theorems for linear fractional-order systems with multiple delays are presented. Secondly, by using the homeomorphism theory, the existence and uniqueness of the equilibrium point for delayed FCCNNs are proved. Then, the global stability criteria for delayed FCCNNs are derived by comparison theorem. Finally, numerical examples are given to illustrate the effectiveness of the presented results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang HG, Wang ZS, Liu DR (2014) A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Trans Neural Netw Learn Syst 25(7):1229–1262

    Article  Google Scholar 

  2. Chen H, Wu LY, Dou Q, Qin J, Li SL, Cheng JZ, Ni D, Heng PA (2017) Ultrasound standard plane detection using a composite neural network framework. IEEE Trans Cybern 47(6):1576–1586

    Article  Google Scholar 

  3. Tong C, Li J, Zhu FM (2017) A convolutional neural network based method for event classification in event-driven multi-sensor network. Comput Electr Eng 60:90–99

    Article  Google Scholar 

  4. Yu SQ, Jia D, Xu CY (2017) Convolutional neural networks for hyperspectral image classification. Neurocomputing 219:88–98

    Article  Google Scholar 

  5. Tan MC, Zhang YN (2009) New sufficient conditions for global asymptotic stability of Cohen–Grossberg neural networks with time-varying delays. Nonlinear Anal Real World Appl 10(4):2139–2145

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo ZY, Wang J, Yan Z (2014) A systematic method for analyzing robust stability of interval neural networks with time-delays based on stability criteria. Neural Netw 54:112–122

    Article  MATH  Google Scholar 

  7. Zheng CD, Zhang HG, Wang ZS (2011) Novel exponential stability criteria of high-order neural networks with time-varying delays. IEEE Trans Syst Man Cybern B 41(2):486–496

    Article  Google Scholar 

  8. Zheng CD, Zhang YL, Wang ZS (2016) Novel stability condition of stochastic fuzzy neural networks with Markovian jumping under impulsive perturbations. Int J Mach Learn Cybern 7(5):795–803

    Article  Google Scholar 

  9. Feng JQ, Ma Q, Qin ST (2017) Exponential stability of periodic solution for impulsive memristor-based Cohen–Grossberg neural networks with mixed delays. Int J Pattern Recogn 31(7):1750022

    Article  MathSciNet  Google Scholar 

  10. Yang XS, Feng ZG, Feng JW, Cao JD (2017) Synchronization of discrete-time neural networks with delays and Markov jump topologies based on tracker information. Neural Netw 85:157–164

    Article  Google Scholar 

  11. Wu CW, Chua LO (1995) Synchronization in an array of linearly coupled dynamical-systems. IEEE Trans Circuits Syst I 42(8):430–447

    Article  MathSciNet  MATH  Google Scholar 

  12. Wu W, Chen TP (2008) Global synchronization criteria of linearly coupled neural network systems with time-varying coupling. IEEE Trans Neural Netw 19(2):319–332

    Article  Google Scholar 

  13. Tseng JP (2013) Global asymptotic dynamics of a class of nonlinearly coupled neural networks with delays. Discrete Contin Dyn Syst 33(10):4693–4729

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang HG, Gong DW, Chen B, Liu ZW (2013) Synchronization for coupled neural networks with interval delay: a novel augmented Lyapunov–Krasovskii functional method. IEEE Trans Neural Netw Learn Syst 24(1):58–70

    Article  Google Scholar 

  15. Tan MC (2016) Stabilization of coupled time-delay neural networks with nodes of different dimensions. Neural Process Lett 43(1):255–268

    Article  Google Scholar 

  16. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  17. Morgado ML, Ford NJ, Lima PM (2013) Analysis and numerical methods for fractional differential equations with delay. J Comput Appl Math 252:159–168

    Article  MathSciNet  MATH  Google Scholar 

  18. Gu YJ, Yu YG, Wang H (2016) Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty. J Frankl Inst Eng Appl Math 353(15):3657–3684

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu AL, Liu L, Huang TW, Zeng ZG (2016) Mittag–Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments. Neural Netw 85:118–127

    Article  Google Scholar 

  20. Wang H, Yu YG, Wen GG, Zhang S, Yu JZ (2015) Global stability analysis of fractional-order Hopfield neural networks with time delay. Neurocomputing 154:15–23

    Article  Google Scholar 

  21. Zhang S, Yu YG, Hu W (2014) Robust stability analysis of fractional-order Hopfield neural networks with parameter uncertainties. Math Probl Eng 2014:302702

    MathSciNet  MATH  Google Scholar 

  22. Yang XJ, Song QK, Liu YR, Zhao ZJ (2015) Finite-time stability analysis of fractional-order neural networks with delay. Neurocomputing 152:19–26

    Article  Google Scholar 

  23. Chen BS, Chen JJ (2016) Global \(O(t^{-\alpha })\) image stability and global asymptotical periodicity for a non-autonomous fractional-order neural networks with time-varying delays. Neural Netw 73:47–57

    Article  MATH  Google Scholar 

  24. Wu AL, Liu L, Huang TW, Zeng ZG (2016) Mittag–Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments. Neural Netw 85:118–127

    Article  Google Scholar 

  25. Chen LP, Liu C, Wu RC, He YG, Chai Y (2016) Finite-time stability criteria for a class of fractional-order neural networks with delay. Neural Comput Appl 27(3):549–556

    Article  Google Scholar 

  26. Shao SY, Chen M, Yan XH (2016) Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance. Nonlinear Dyn 83(4):1855–1866

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu J, Wang J (2012) Global stability of complex-valued recurrent neural networks with time-delays. IEEE Trans Neural Netw Learn Syst 23(6):853–865

    Article  Google Scholar 

  28. Fang T, Sun JT (2014) Further investigate the stability of complex-valued recurrent neural networks with time-delays. IEEE Trans Neural Netw Learn Syst 25(9):1709–1713

    Article  Google Scholar 

  29. Zhang ZQ, Yu SH (2016) Global asymptotic stability for a class of complex-valued Cohen–Grossberg neural networks with time delays. Neurocomputing 171:1158–1166

    Article  Google Scholar 

  30. Wang ZY, Huang LH (2016) Global stability analysis for delayed complex-valued BAM neural networks. Neurocomputing 173:2083–2089

    Article  Google Scholar 

  31. Liu XW, Chen TP (2016) Global exponential stability for complex-valued recurrent neural networks with asynchronous time delays. IEEE Trans Neural Netw Learn Syst 27(3):593–606

    Article  MathSciNet  Google Scholar 

  32. Alfaro-Ponce M, Salgado I, Arguelles A (2016) Adaptive identifier for uncertain complex-valued discrete-time nonlinear systems based on recurrent neural networks. Neural Process Lett 43(1):133–153

    Article  Google Scholar 

  33. Zhou C, Zhang WL, Yang XS, Xu C, Feng JW (2017) Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations. Neural Process Lett 46(1):271–291

    Article  Google Scholar 

  34. Rakkiyappan R, Velmurugan G, Cao JD (2014) Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays. Nonlinear Dyn 78(4):2823–2836

    Article  MathSciNet  MATH  Google Scholar 

  35. Rakkiyappan R, Sivaranjani R, Velmurugan G (2016) Analysis of global \(O(t^{-\alpha })\) stability and global asymptotical periodicity for a class of fractional-order complex-valued neural networks with time varying delays. Neural Netw 77:51–69

    Article  Google Scholar 

  36. Bao HB, Park JH, Cao JD (2016) Synchronization of fractional-order complex-valued neural networks with time delay. Neural Netw 81:16–28

    Article  Google Scholar 

  37. Liu J (2014) Complex modified hybrid projective synchronization of different dimensional fractional-order complex chaos and real hyper-chaos. Entropy 16(12):6195–6211

    Article  Google Scholar 

  38. Wu EL, Yang XS (2016) Adaptive synchronization of coupled nonidentical chaotic systems with complex variables and stochastic perturbations. Nonlinear Dyn 84(1):261–269

    Article  MathSciNet  MATH  Google Scholar 

  39. Tan MC, Tian WX (2015) Finite-time stabilization and synchronization of complex dynamical networks with nonidentical nodes of different dimensions. Nonlinear Dyn 79(1):731–741

    Article  MathSciNet  MATH  Google Scholar 

  40. Ding ZX, Shen Y (2016) Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Netw 76:97–105

    Article  Google Scholar 

  41. Liang S, Wu RC, Chen LP (2016) Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay. Phys A Stat Mech Appl 444:49–62

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang Y, Li TZ (2015) Synchronization of fractional order complex dynamical networks. Phys A Stat Mech Appl 428:1–12

    Article  MathSciNet  MATH  Google Scholar 

  43. Miller KS, Samko SG (2001) Completely monotonic functions. Integ Trans Spec Funct 12(4):389–402

    Article  MathSciNet  MATH  Google Scholar 

  44. Qin YX, Liu YQ, Wang L, Zheng ZX (1989) Stability of dynamic systems with delays. Science Press, Beijing

    Google Scholar 

  45. Hu HY, Wang ZH (2002) Dynamics of controlled mechanical systems with delayed feedback. Springer, Berlin

    Book  MATH  Google Scholar 

  46. Tan MC, Pan Q, Zhou X (2016) Adaptive stabilization and synchronization of non-diffusively coupled complex networks with nonidentical nodes of different dimensions. Nonlinear Dyn 85(1):303–316

    Article  MathSciNet  MATH  Google Scholar 

  47. Guo ZY, Huang LH (2009) LMI conditions for global robust stability of delayed neural networks with discontinuous neuron activations. Appl Math Comput 215(3):889–900

    MathSciNet  MATH  Google Scholar 

  48. Zheng CD, Zhang XY, Wang ZS (2016) Mode and delay-dependent stochastic stability conditions of fuzzy neural networks with Markovian jump parameters. Neural Process Lett 43(1):195–217

    Article  Google Scholar 

  49. Bhalekar S, Daftardar-Gejji V (2011) A predictor–corrector scheme for solving nonlinear delay differential equations of fractional order. Fract Calc Appl 1(5):1–9

    MATH  Google Scholar 

  50. Jia Q (2007) Hyperchaos generated from the Lorenz chaotic system and its control. Phys Lett A 366(3):217–222

    Article  MATH  Google Scholar 

  51. Li YX, Tang WKS, Chen GR (2005) Generating hyperchaos via state feedback control. Int J Bifurc Chaos 15(10):3367–3375

    Article  Google Scholar 

  52. Belykh VN, Chua LO (1992) New type of strange attractor from a geometric model of Chua’s circuit. Int J Bifurc Chaos 2(3):697–704

    Article  MathSciNet  MATH  Google Scholar 

  53. Wu ZY (2014) Cluster synchronization in colored community network with different order node dynamics. Commun Nonlinear Sci Numer Simul 19(4):1079–1087

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research is supported by grants from the National Natural Science Foundation of China (Nos. 61572233 and 11471083), the Fundamental Research Funds for the Central Universities (No. 21612443), and the Science and Technology Program of Guangzhou, China (No. 201707010404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manchun Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, M., Pan, Q. Global stability analysis of delayed complex-valued fractional-order coupled neural networks with nodes of different dimensions. Int. J. Mach. Learn. & Cyber. 10, 897–912 (2019). https://doi.org/10.1007/s13042-017-0767-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-017-0767-4

Keywords

Navigation