Skip to main content
Log in

Global sliding-mode dynamic surface control for MDF continuous hot-pressing slab thickness via LESO

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, a robust slab thickness tracking control problem is investigated for medium density fiberboard continuous hot-pressing using an electro-hydraulic servo system in the presence of interior parameter perturbations and external load disturbances. By utilizing a linear extended state observer (LESO) and combining dynamic surface control method with a global sliding mode control (GSMC) technique, a robust controller is designed. Firstly, the LESO is constructed to estimate the total number of disturbances for system model compensation. Subsequently, a global sliding-mode dynamic surface controller is designed. Using first order low-pass filters to calculate the derivatives of synthetic control inputs, the controller form is simplified in the procedure. Introducing the GSMC into the third subsystem, the control precision and response speed are further improved. Moreover, an appropriate Lyapunov function is chosen to demonstrate that all signals from the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error converges to zero asymptotically. Finally, numerical simulation results are used to authenticate and validate the benefits of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ou YL (1996) Continuous flat hot pressing. Wood Ind 11(6):37–40

    Google Scholar 

  2. Shao XD, Zhu LK, Liu YQ (2015) SMDO-based backstepping terminal sliding mode control method for hot press hydraulic position servo system. In: Control and decision conference (CCDC), 2015 27th Chinese

  3. Chen HM, Renn JC, Su JP (2005) Sliding mode control with varying boundary layers for an electro-hydraulic position servo system. Int J Adv Manuf Technol 26(1–2):117–123

    Article  Google Scholar 

  4. Ghazali R, Sam YM, Rahmat MF, Hashim AWIM. (2010) Sliding mode control with PID sliding surface of an electro-hydraulic servo system for position tracking control. Aust J Basic Appl Sci 4(10):4749–4759

    Google Scholar 

  5. Tang R, Zhang Q (2013) Dynamic sliding mode control scheme for electro-hydraulic position servo system. Proc Eng 24:28–32

    Article  Google Scholar 

  6. Lu YS, Chen JS (1995) Design of a global sliding-mode controller for a motor drive with bounded control. Int J Control 62(5):1001–1019

    Article  MathSciNet  MATH  Google Scholar 

  7. Young KD, Utkin V, Özgüner Ümit (1999) A control engineer’s guide to sliding mode control. IEEE Trans Control Syst Technol 7(3):328–342

    Article  Google Scholar 

  8. Guan C, Pan S (2008) Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters. Control Eng Pract 16(11):1275–1284

    Article  Google Scholar 

  9. Bessa WM, Dutra MS, Kreuzer E (2010) Sliding mode control with adaptive fuzzy dead-zone compensation of an electro-hydraulic servo-system. J Intell Robot Syst 58(1):3–16

    Article  MATH  Google Scholar 

  10. Fang YM, Jiao ZX, Wang WB (2012) Adaptive backstepping sliding mode control for rolling mill hydraulic servo position system. Electr Mach Control 15(10):95–100

    Google Scholar 

  11. Cerman O, Hušek P (2012) Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism. Expert Syst Appl 39(11):10269–10277

    Article  Google Scholar 

  12. Han JQ (1995) The “extended state observer” of a class of uncertain systems. Control Decis 10(1):85–88

    Google Scholar 

  13. Gao Z (2003) Scaling and bandwidth-parameterization based controller tuning. Am Control Conf Proc 2003 6:4989–4996

    Article  Google Scholar 

  14. Zheng Q, Gao LQ, Gao Z (2007) On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics. In: Decision control, 2007 46th IEEE conference, pp 3501–3506

  15. Guo BZ, Zhao ZL (2011) On the convergence of an extended state observer for nonlinear systems with uncertainty. Syst Control Lett 60(6):420–430

    Article  MathSciNet  MATH  Google Scholar 

  16. Ursu I, Ursu F, Popescu F (2006) Backstepping design for controlling electrohydraulic servos. J Franklin Inst 343(1):94–110

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu Z, Min J, Jian R (2008) Adaptive backstepping neural network control of electro-hydraulic position servo system. In: Systems and control in aerospace and astronautics, 2008. ISSCAA 2008. 2nd international symposium, pp 1–4

  18. Kaddissi C, Kenné JP, Saad M (2011) Indirect adaptive control of an electrohydraulic servo system based on nonlinear backstepping. Mechatron IEEE/ASME Trans 16(6):1171–1177

    Article  Google Scholar 

  19. Hedrick JK, Yip PP, Gerdes JC (2000) Dynamic surface control for a class of nonlinear systems. Autom Control IEEE Trans 45(10):1893–1899

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang TY (2001) Fiber board volume of wood industrial utility. China Forestry Press Publishing, Beijing, ISBN: 7-5038-2838-2

    Google Scholar 

  21. Tan SX, Zhou DG (2007) Handbook of wood industry. China Forestry Press Publishing, Beijing, ISBN: 978-7-5038-4488-1

    Google Scholar 

  22. Wu ZS (2008) Hydraulic control system. Higher Education Press Publishing, Beijing, ISBN: 978-7-04-023114-4

    Google Scholar 

  23. Petros AI, Jing S (1996) Robust adaptive control. Prentice Hall Publishing, Upper Saddle River, ISBN: 978-0-486-49817-1

    MATH  Google Scholar 

  24. Li L, Xie J, Huang JZ (2014) Modeling and dynamic surface adaptive sliding mode control of erecting mechanism. Syst Eng Electr 36(2):337–342

    Google Scholar 

  25. Zhao HC, Shi XJ, Yang XX (2012) Adaptive sliding-mode dynamic surface control for supersonic missile. Flight Dyn 30(5):432–435

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61473111, 31370565) and the 948 project (2014-4-46).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangkuan Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Wang, Z., Qiang, H. et al. Global sliding-mode dynamic surface control for MDF continuous hot-pressing slab thickness via LESO. Int. J. Mach. Learn. & Cyber. 10, 1249–1258 (2019). https://doi.org/10.1007/s13042-018-0804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-018-0804-y

Keywords

Navigation