Skip to main content
Log in

Predicting algal appearance on mortar surface with ensembles of adaptive neuro fuzzy models: a comparative study of ensemble strategies

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Algal colonization on building façades causes paint defects, structural damages, and adverse effects on the health of occupants. Building managers need to be better informed about the status of the façade to develop effective maintenance programs. This study proposes a soft computing approach for predicting the appearance of algae on building façade with mortar cladding. The proposed approach is established by ensembles of Adaptive neuro fuzzy inference system, named as ANFIS-ESM, with random subspace (RSE), adaptive boosting (AdaBoost), random linear oracle (RLO), and stacking (STE) strategies. An experimental dataset which consists of 510 historical records and 12 conditioning factors has been collected for this research. Pre-training and post-training analyses on the importance of factors have also been performed by means of mutual information, ReliefF, and Fourier amplitude sensitivity test. Importantly, experimental results point out that STE strategy has attained the most accurate outcome with a classification accuracy rate (CAR) of 87.76% and an area under the curve (AUC) of 0.91. Moreover, the proposed ensemble framework has outperformed other benchmark models including the support vector machine, the random forest, and the rotation forest. Therefore, ANFIS-ESM is a promising tool to assist building managers in establishing maintenance programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ahmad A, Brown G (2009) A study of random linear oracle ensembles. In: Multiple classifier systems. Springer, Berlin, Heidelberg, pp 488–497. https://doi.org/10.1007/978-3-642-02326-2_49

    Chapter  Google Scholar 

  2. Barberousse H, Lombardo RJ, Tell G, Couté A (2006) Factors involved in the colonisation of building façades by algae and cyanobacteria in. France Biofouling 22:69–77. https://doi.org/10.1080/08927010600564712

    Article  Google Scholar 

  3. Barberousse H, Ruot B, Yéprémian C, Boulon G (2007) An assessment of façade coatings against colonisation by aerial algae and cyanobacteria. Build Environ 42:2555–2561. https://doi.org/10.1016/j.buildenv.2006.07.031

    Article  Google Scholar 

  4. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  5. Chiu S (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2:267–278

    Google Scholar 

  6. Chou J-S, Yang K-H, Lin J-Y (2016) Peak shear strength of discrete fiber-reinforced soils computed by machine learning and metaensemble methods. J Comput Civ Eng 30:04016036. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000595

    Article  Google Scholar 

  7. Dalod E (2015) Influence de la composition chimique de mortiers sur leur biodeterioration par les algues. PhD thesis, Ecloe des Mines de Saint Etienne, France

  8. De Muynck W, Ramirez AM, De Belie N, Verstraete W (2009) Evaluation of strategies to prevent algal fouling on white architectural and cellular concrete. Int Biodeterior Biodegradation 63:679–689. https://doi.org/10.1016/j.ibiod.2009.04.007

    Article  Google Scholar 

  9. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  10. Erdly JL, Schwartz TA (2004) Building facade maintenance repair and inspection. ASTM International (Printed in the USA)

  11. Flores-Colen I, de Brito J (2010) A systematic approach for maintenance budgeting of buildings façades based on predictive and preventive strategies. Constr Build Mater 24:1718–1729. https://doi.org/10.1016/j.conbuildmat.2010.02.017

    Article  Google Scholar 

  12. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55:119–139

    Article  MathSciNet  MATH  Google Scholar 

  13. Graziani L, Quagliarini E (2018) On the modelling of algal biofouling growth on nano-TiO2 coated and uncoated limestones and sandstones. Coatings 8:54. https://doi.org/10.3390/coatings8020054

    Article  Google Scholar 

  14. Ho T-K (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20:832–844

    Article  Google Scholar 

  15. Hoang N-D, Tien Bui D, Liao K-W (2016) Groutability estimation of grouting processes with cement grouts using differential flower pollination optimized support vector machine. Appl Soft Comput 45:173–186. https://doi.org/10.1016/j.asoc.2016.04.031

    Article  Google Scholar 

  16. Jang J-SR, Sun C-T, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, Upper Saddle River

    Google Scholar 

  17. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  18. Jatmiko W et al (2015) Algal growth rate modeling and prediction optimization using incorporation of MLP and CPSO algorithm. In: Proc. of the 2015 International Symposium on Micro-NanoMechatronics and Human Science (MHS), 23–25 Nov. 2015, pp 1–7. https://doi.org/10.1109/MHS.2015.7438293

  19. Karaboga D, Kaya E (2018) Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artif Intell Rev. https://doi.org/10.1007/s10462-017-9610-2

    Google Scholar 

  20. Kuncheva LI (2014) Combining pattern classifiers: methods and algorithms. Wiley, Hoboken (Printed in the United States of America)

    MATH  Google Scholar 

  21. Kuncheva LI, Rodriguez JJ (2007) Classifier ensembles with a random linear oracle. IEEE Trans Knowl Data Eng 19:500–508. https://doi.org/10.1109/TKDE.2007.1016

    Article  Google Scholar 

  22. Kuncheva LI, Rodríguez JJ (2007) An experimental study on rotation forest ensembles. In: Multiple classifier systems. Springer, Berlin, Heidelberg, pp 459–468. https://doi.org/10.1007/978-3-540-72523-7_46

    Chapter  Google Scholar 

  23. Kwon S-H, Chun C, Kwak R-Y (2011) Relationship between quality of building maintenance management services for indoor environmental quality and occupant satisfaction. Build Environ 46:2179–2185. https://doi.org/10.1016/j.buildenv.2011.04.028

    Article  Google Scholar 

  24. Loh W (2002) Product development for green productivity—a case study of the development of algae resistant surface coating for building facades in the human tropics. In: Proc. of the 2nd World Conference on Green Productivity, Johannesburg, 2002

  25. MathWorks (2012) Fuzzy logic toolbox. The MathWorks Inc., Natick

    Google Scholar 

  26. McRae GJ, Tilden JW, Seinfeld JH (1982) Global sensitivity analysis—a computational implementation of the fourier amplitude sensitivity test (FAST). Comput Chem Eng 6:15–25. https://doi.org/10.1016/0098-1354(82)80003-3

    Article  Google Scholar 

  27. Parmanto B, Munro PW, Doyle HR (1996) Improving committee diagnosis with resampling techinques. In: Touretzky DS, Mozer MC, Hesselmo ME (eds) Advances in neural information processing systems, 8. MIT Press, Cambridge, pp 882–888

    Google Scholar 

  28. Peng H, Fulmi L, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  Google Scholar 

  29. Petković D, Shamshirband S, Anuar NB, Naji S, Mat Kiah ML, Gani A (2015) Adaptive neuro-fuzzy evaluation of wind farm power production as function of wind speed and direction Stoch. Environ Res Risk Assess 29:793–802. https://doi.org/10.1007/s00477-014-0901-8

    Article  Google Scholar 

  30. Pianosi F, Sarrazin F, Wagener T (2015) A Matlab toolbox for global sensitivity analysis. Environ Modell Softw 70:80–85. https://doi.org/10.1016/j.envsoft.2015.04.009

    Article  Google Scholar 

  31. Rabiei P, Arias-Aranda D (2018) An Adaptive Network-based Fuzzy Inference System for predicting organizational commitment according to different levels of job satisfaction in growing economies. Simulation 94:341–358. https://doi.org/10.1177/0037549717712037

    Article  Google Scholar 

  32. Raos M, Petković D, Protić M, Jovanović M, Marković D (2016) Selection of the most influential flow and thermal parameters for predicting the efficiency of activated carbon filters using neuro-fuzzy technique. Build Environ 104:68–75. https://doi.org/10.1016/j.buildenv.2016.04.031

    Article  Google Scholar 

  33. Robnik-Šikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53:23–69. https://doi.org/10.1023/a:1025667309714

    Article  MATH  Google Scholar 

  34. Rodriguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 28:1619–1630

    Article  Google Scholar 

  35. Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33:1–39. https://doi.org/10.1007/s10462-009-9124-7

    Article  Google Scholar 

  36. Rokach L (2010) Pattern classification using ensemble method. Series in machine perception and artificial intelligence. World Scientific Publishing, Singapore

    MATH  Google Scholar 

  37. Shamaei E, Kaedi M (2016) Suspended sediment concentration estimation by stacking the genetic programming and neuro-fuzzy predictions. Appl Soft Comput 45:187–196. https://doi.org/10.1016/j.asoc.2016.03.009

    Article  Google Scholar 

  38. Shin Y, Kim D-W, Kim J-Y, Kang K-I, Cho M-Y, Cho H-H (2009) Application of AdaBoost to the retaining wall method selection in construction. J Comput Civ Eng 23:188–192. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000001

    Article  Google Scholar 

  39. Shirakawa MA, Tavares RG, Gaylarde CC, Taqueda MES, Loh K, John VM (2010) Climate as the most important factor determining anti-fungal biocide performance in paint films. Sci Total Environ 408:5878–5886. https://doi.org/10.1016/j.scitotenv.2010.07.084

    Article  Google Scholar 

  40. Sun B, Chen S, Wang J, Chen H (2016) A robust multi-class AdaBoost algorithm for mislabeled noisy data. Knowl-Based Syst 102:87–102. https://doi.org/10.1016/j.knosys.2016.03.024

    Article  Google Scholar 

  41. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15:116–132

    Article  MATH  Google Scholar 

  42. Tien Bui D, Bui Q-T, Nguyen Q-P, Pradhan B, Nampak H, Trinh PT (2017) A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agric For Meteorol 233:32–44. https://doi.org/10.1016/j.agrformet.2016.11.002

    Article  Google Scholar 

  43. Tien Bui D, Pradhan B, Nampak H, Bui Q-T, Tran Q-A, Nguyen Q-P (2016) Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. J Hydrol 540:317–330. https://doi.org/10.1016/j.jhydrol.2016.06.027

    Article  Google Scholar 

  44. Tran T-H, Hoang N-D (2016) Predicting colonization growth of algae on mortar surface with artificial neural network. J Comput Civ Eng 30:04016030. https://doi.org/10.1061/(ASCE)CP.1943-5487.000059

    Article  Google Scholar 

  45. Tran T-H, Hoang N-D (2017) Estimation of algal colonization growth on mortar surface using a hybridization of machine learning and metaheuristic optimization. Sādhanā 42:929–939 https://doi.org/10.1007/s12046-017-0652-6

    Google Scholar 

  46. Tran TH (2011) Influence des caractéristiques intrinsèques d’un mortier sur son encrassement biologique. PhD thesis, Ecloe des Mines de Saint Etienne, France

  47. Tran TH et al (2013) Avrami’s law based kinetic modeling of colonization of mortar surface by alga Klebsormidium flaccidum. Int Biodeterior Biodegradation 79:73–80. https://doi.org/10.1016/j.ibiod.2012.12.012

    Article  Google Scholar 

  48. Trawiński K, Cordón O, Quirin A, Sánchez L (2013) Multiobjective genetic classifier selection for random oracles fuzzy rule-based classifier ensembles: How beneficial is the additional diversity? Knowl Based Syst 54:3–21. https://doi.org/10.1016/j.knosys.2013.08.006

    Article  Google Scholar 

  49. Wang L et al (2017) Analysis of algae growth mechanism and water bloom prediction under the effect of multi-affecting factor. Saudi J Biol Sci 24:556–562. https://doi.org/10.1016/j.sjbs.2017.01.026

    Article  Google Scholar 

  50. Wang X-Z, Dong C-R, Fan T-G (2007) Training T-S norm neural networks to refine weights for fuzzy if–then rules. Neurocomputing 70:2581–2587. https://doi.org/10.1016/j.neucom.2007.01.005

    Article  Google Scholar 

  51. Wang X, Aamir R, Fu A-M (2015) Fuzziness based sample categorization for classifier performance improvement. J Intell Fuzzy Syst 29:1185–1196. https://doi.org/10.3233/IFS-151729

    Article  MathSciNet  Google Scholar 

  52. Wang X, Jiarong H (1998) On the handling of fuzziness for continuous-valued attributes in decision tree generation. Fuzzy Sets Syst 99:283–290. https://doi.org/10.1016/S0165-0114(97)00030-4

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang XZ, Wang R, Xu C (2018) Discovering the relationship between generalization and uncertainty by incorporating complexity of classification. IEEE Trans Cybern 48:703–715. https://doi.org/10.1109/TCYB.2017.2653223

    Article  Google Scholar 

  54. Wang XZ, Xing HJ, Li Y, Hua Q, Dong CR, Pedrycz W (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23:1638–1654. https://doi.org/10.1109/TFUZZ.2014.2371479

    Article  Google Scholar 

  55. Wolpert DH (1992) Original contribution: stacked generalization. Neural Netw. https://doi.org/10.1016/S0893-6080(05)80023-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhat-Duc Hoang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, TH., Hoang, ND. Predicting algal appearance on mortar surface with ensembles of adaptive neuro fuzzy models: a comparative study of ensemble strategies. Int. J. Mach. Learn. & Cyber. 10, 1687–1704 (2019). https://doi.org/10.1007/s13042-018-0846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-018-0846-1

Keywords

Navigation