Skip to main content
Log in

Fast and unsupervised outlier removal by recurrent adaptive reconstruction extreme learning machine

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Outlier removal is vital in machine learning. As massive unlabeled data are generated rapidly today, eliminating outliers from noisy data in a fast and unsupervised manner is gaining increasing attention in practical applications. This paper tackles this challenging problem by proposing a novel Recurrent Adaptive Reconstruction Extreme Learning Machine (RAR-ELM). Specifically, with the given noisy data collection, RAR-ELM recurrently learns to reconstruct data and automatically excludes those data with high reconstruction errors as outliers by a novel adaptive labeling mechanism. Compared with existing methods, the proposed RAR-ELM enjoys three major merits: first, RAR-ELM inherits the fast and sound learning property of original extreme learning machine (ELM). RAR-ELM can be implemented at a tens or hundreds of times faster speed while achieving a superior or comparable outlier removal performance to existing methods, which makes RAR-ELM particularly suitable for application scenarios like real-time outlier removal; secondly, instead of priorly specifying a decision threshold, RAR-ELM is able to adaptively find a reasonable decision threshold when processing data with different proportions of outliers, which is vital to the case of unsupervised outlier removal where no prior knowledge of outliers in the data is available; thirdly, we also propose Online Sequential RAR-ELM (OS-RAR-ELM) can be implemented by an online or sequential mode, which makes RAR-ELM easily applicable to massive noisy data or online sequential data. Extensive experiments on various datasets reveal that the proposed RAR-ELM can realize faster and better unsupervised outlier removal in contrast to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.vision.caltech.edu/Image_Datasets/Caltech101/.

  2. http://www.cs.toronto.edu/~kriz/cifar.html.

  3. http://ufldl.stanford.edu/housenumbers/.

  4. http://yann.lecun.com/exdb/mnist/.

  5. https://github.com/zalandoresearch/fashion-mnist.

  6. http://archive.ics.uci.edu/ml/index.php.

  7. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

  8. http://pytorch.org/.

  9. http://scikit-learn.org/.

  10. https://github.com/acba/elm.

  11. https://github.com/yanssy/pytorch-playground.

References

  1. Russakovsky O, Deng J, Hao S, Krause J, Satheesh S, Ma S (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

    Article  MathSciNet  Google Scholar 

  2. Schroff F, Criminisi A, Zisserman A (2007) Harvesting image databases from the web. IEEE Int Conf Comput Vis 33:1–8

    Google Scholar 

  3. Chandola V (2004) Outlier detection : a survey. ACM Comput Surv 14(3):15

    MathSciNet  Google Scholar 

  4. Perdisci R, Gu G, Lee W (2007) Using an ensemble of one-class SVM classifiers to Harden Payload-based anomaly detection systems. In: International conference on data mining, IEEE, pp. 488–498

  5. Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes. IEEE Comput Vis Pattern Recognit 26:1975–1981

    Google Scholar 

  6. Ji Z, Pang Y, Li X (2015) Relevance preserving projection and ranking for web image search reranking. IEEE Trans Image Process A Publ IEEE Signal Process Soc 24(11):4137–47

    MathSciNet  MATH  Google Scholar 

  7. Xiao Y, Wang H, Zhang L, Xu W (2014) Two methods of selecting Gaussian Kernel parameters for one-class svm and their application to fault detection. Knowl Based Syst 59(2):75–84

    Article  Google Scholar 

  8. Xiao Y, Wang H, Xu W, Zhou J (2016) Robust one-class svm for fault detection. Chemometr Intell Lab Syst 151:15–25

    Article  Google Scholar 

  9. Roberts S, Tarassenko L (1994) A probabilistic resource allocating network for novelty detection. Neural Comput 6(2):270–284

    Article  Google Scholar 

  10. Dasarathy BV (1998) Adaptive local fusion systems for novelty detection and diagnostics in condition monitoring. Proc SPIE Int Soc Opt Eng 3376:210–218

    Google Scholar 

  11. Manevitz L, Yousef M (2007) One-class document classification via Neural Networks. Elsevier, Amsterdam

    Book  Google Scholar 

  12. Scholkopf B, Platt JC, Shawetaylor J, Smola AJ, Williamson RC (2014) Estimating the support of a high-dimensional distribution. Neural Comput 13(7):1443–1471

    Article  Google Scholar 

  13. Tax DMJ, Duin RPW (2004) Support vector data description. Mach Learn 54(1):45–66

    Article  Google Scholar 

  14. Leng Q, Qi H, Miao J, Zhu W, Su G (2015) One-class classification with extreme learning machine. In: Mathematical problems in engineering 1–11

    Article  MathSciNet  Google Scholar 

  15. Kriegel HP, Hubert MS, Zimek A (2008) Angle-based outlier detection in high-dimensional data. In: ACM SIGKDD international conference on knowledge discovery and data mining, pp 444–452

  16. Casale P, Pujol O, Radeva P (2014) Approximate polytope ensemble for one-class classification. Pattern Recognit 47(2):854–864

    Article  Google Scholar 

  17. Janakiraman VM, Nielsen D (2016) Anomaly detection in aviation data using extreme learning machines. In: International joint conference on neural networks, pp 1993–2000

  18. Breunig MM, Kriegel HP, Ng RT (2000) LOF: identifying density-based local outliers. In: ACM sigmod international conference on management of data, Vol 29, pp 93–104

    Article  Google Scholar 

  19. Tang J, Chen Z, Fu AW, Cheung DW (2002) Enhancing effectiveness of outlier detections for low density patterns. Pacific Asia Conf Knowl Discov Data Min 2336:535–548

    Article  Google Scholar 

  20. Hautamaki V, Karkkainen I, Franti P (2004) Outlier Detection Using k-Nearest Neighbour Graph. In: International conference on pattern recognition, IEEE, Vol 3, pp 430–433

  21. Pokrajac D, Lazarevic A, Latecki LJ (2007) Incremental local outlier detection for data streams. In: Computational intelligence and data mining, 2007, CIDM 2007, IEEE Symposium on, pp 504–515

  22. Liu W, Hua G, Smith JR (2014) Unsupervised one-class learning for automatic outlier removal. In: IEEE conference on computer vision and pattern recognition, pp 3826–3833

  23. Grubbs F (1969) Procedures for detecting outlying observations in samples. Technometrics 11(1):1–21

    Article  Google Scholar 

  24. Zimek A, Schubert E, Kriegel HP (2012) A survey on unsupervised outlier detection in high-dimensional numerical data. Stat Anal Data Min 5(5):363–387

    Article  MathSciNet  Google Scholar 

  25. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076

    Article  MathSciNet  Google Scholar 

  26. Kim JS, Scott C (2008) Robust kernel density estimation. In: IEEE international conference on acoustics, speech and signal processing, vol 13, pp 2529–2565

  27. Karlpearson FRS (1901) Liii. on lines and planes of closest fit to systems of points in space. Philos Magn 2(11):559–572

    Article  Google Scholar 

  28. Schlkopf B, Smola A, Mller KR (1998) Nonlinear component analysis as a kernel eigen-value problem. Neuroimage 10:1299–1319

    Google Scholar 

  29. Vidal R, Sapiro G, Elhamifar E (2012) See all by looking at a few: Sparse modeling for finding representative objects. IEEE Comput Vis Pattern Recognit 157:1600–1607

    Google Scholar 

  30. Xia Y, Cao X, Wen F, Hua G (2015) Learning discriminative reconstructions for unsupervised outlier removal. In: IEEE international conference on computer vision, pp 1511–1519

  31. Li S, Shao M, Fu Y (2014) Locality linear fitting one-class SVM with low-rank constraints for outlier detection. In: International joint conference on neural networks, IEEE, pp 676–683

  32. Li S, Shao M, Fu Y (2014) Low-rank outlier detection

    Google Scholar 

  33. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  34. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern 42(2):513–529

    Article  Google Scholar 

  35. Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17(6):1411–1423

    Article  Google Scholar 

  36. Huang G, Song S, Gupta JND, Wu C (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44(12):2405–2417

    Article  Google Scholar 

  37. Cambria E, Liu Q, Li K, Leung VCM, Feng L, Ong YS et al (2013) Extreme learning machines: trends and controversies. IEEE Intell Syst 28(6):30–59

    Article  Google Scholar 

  38. Wang Y, Xie Z, Xu K, Dou Y, Lei Y (2016) An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning. Neurocomputing 174(PB):988–998

    Article  Google Scholar 

  39. Bai Z, Huang GB (2015) Generic object recognition with local receptive fields based extreme learning machine. Proc Comput Sci 53(1):391–399

    Article  Google Scholar 

  40. Decherchi S, Gastaldo P, Zunino R, Cambria E, Redi J (2013) Circular-elm for the reduced-reference assessment of perceived image quality. Neurocomputing 102(2):78–89

    Article  Google Scholar 

  41. Choi K, Toh K-A, Byun H (2012) Incremental face recognition for large-scale social network services. Pattern Recognit 45(8):2868–2883

    Article  Google Scholar 

  42. Xie Z, Kai X, Shan W, Liu L, Xiong Y, Huang H (2015) Projective feature learning for 3d shapes with multi-view depth images. Comput Graph Forum 34(7):1–11

    Article  Google Scholar 

  43. Wang S, Zhu E, Yin J, Porikli F (2017) Video anomaly detection and localization by local motion based joint video representation and OCELM. Neurocomputing 277:161–175

    Article  Google Scholar 

  44. Tang J, Deng C, Huang GB (2017) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27(4):809–821

    Article  MathSciNet  Google Scholar 

  45. Zhang L, Deng P (2017) Abnormal odor detection in electronic nose via self-expression inspired extreme learning machine. IEEE Trans Syst Man Cybern Syst PP(99):1–11

  46. Williams G, Baxter R, He H, Hawkins S, Gu L (2002) A comparative study of RNN for outlier detection in data mining. In: IEEE international conference on data mining, 2002. ICDM 2003. IEEE, Proceedings vol 156, pp 709–712

  47. Ohtsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  48. Dasgupta S (2013) Experiments with random projection. In: Proceedings of the sixteenth conference on uncertainty in artificial intelligence, pp 143–151

  49. Bingham E, Mannila H (2001) Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, pp 245–250

  50. Xie H, Li J, Xue H (2017) A survey of dimensionality reduction techniques based on random projection. arXiv preprint arXiv:1706.04371

  51. Dasgupta S, Gupta A (2003) An elementary proof of a theorem of johnson and lindenstrauss. Random Struct Algorithm 22(1):60–65

    Article  MathSciNet  Google Scholar 

  52. Aggarwal C (2015) Outlier analysis. Springer, New York

    MATH  Google Scholar 

  53. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection:a survey. ACM Comput Surv (CSUR) 41(3):1–58

    Article  Google Scholar 

  54. Zong W, Huang GB, Chen Y (2013) Weighted extreme learning machine for imbalance learning. Neurocomputing 101(3):229–242

    Article  Google Scholar 

  55. Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: Computer vision and pattern recognition, IEEE, vol 119, pp 3360–3367

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Siqi.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siqi, W., Qiang, L., Xifeng, G. et al. Fast and unsupervised outlier removal by recurrent adaptive reconstruction extreme learning machine. Int. J. Mach. Learn. & Cyber. 10, 3539–3556 (2019). https://doi.org/10.1007/s13042-019-00943-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-019-00943-4

Keywords

Navigation