Skip to main content
Log in

Adaptive random-based self-organizing background subtraction for moving detection

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The adaptability plays a significant role in moving detection. The diverse scenarios in real world still challenge this problem. Therefore, in this paper, we proposed an adaptive moving detection method, namely Adaptive Random-based Self-Organizing back- ground subtraction (ABSOBS) method. This method can adaptively extract the moving objects in various conditions and eliminate the “ghost” pixels simultaneously. Therefore, a robust initialization strategy is proposed to remove the noise pixels caused by the initialized frames. The proposed method uses a random- based scheme which allows the foreground pixels to up- date the neural network with a small probability. This strategy allows our algorithm to efficiently handle scene changes. Moreover, a foreground filter based on random rule is designed to eliminate the “ghost” pixel. More importantly, ABSOBS adopts a regulator to control the updating rate in different conditions. It makes our method easy-to-used and need not to set the parameters manually. The experiment results on various scenarios show that our method improves the detection accuracy for the SOBS and outperforms other state-of- the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fan CT, Wang YK, Huang CR (2016) Heterogeneous information fusion and visualization for a large-scale intelligent video surveillance system. IEEE Trans Syst Man Cybern Syst 47(4):593–604

    Article  Google Scholar 

  2. Dollar P, Wojek C, Schiele B, Perona P (2011) Pedestrian detection: an evaluation of the state of the art. IEEE Trans Pattern Anal Mach Intell 34(4):743–761

    Article  Google Scholar 

  3. Xu F, Liu X, Fujimura K (2005) Pedestrian detection and tracking with night vision. IEEE Trans Intell Transp Syst 6(1):63–71

    Article  Google Scholar 

  4. Smeulders AW, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M (2013) Visual tracking: an experimental survey. IEEE Trans Pattern Anal Mach Intell 36(7):1442–1468

    Google Scholar 

  5. Zhang K, Zhang L, Yang MH (2012) Real-time compressive tracking. In: Proceedings of European conference on computer vision, pp 864–877

  6. Tian Y, Feris RS, Liu H, Hampapur A, Sun MT (2011) Robust detection of abandoned and removed objects in complex surveillance videos. IEEE Trans Syst Man Cybern C Appl 41(5):565–576

    Article  Google Scholar 

  7. Huang S (2011) An advanced motion detection algorithm with video quality analysis for video surveillance systems. IEEE Trans Circuits Syst Video Technol 21(1):1–14

    Article  Google Scholar 

  8. Hu W, Tan T, Wang L, Maybank S (2004) A survey on visual surveillance of object motion and behaviors. IEEE Trans Syst Man Cybern C Appl Rev 34(3):334–352

    Article  Google Scholar 

  9. Sobral A, Vacavant A (2014) A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput Vis Image Underst 14:4–21

    Article  Google Scholar 

  10. Bouwmans T (2014) Traditional and recent approaches in background modeling for foreground detection: an overview. Comput Sci Rev 11:32–66

    MATH  Google Scholar 

  11. Sun CC, Wang YH, Sheu MH (2017) Fast motion object detection algorithm using complementary depth image on an RGB-D camera. IEEE Sens J 17(17):5728–5734

    Article  Google Scholar 

  12. Baker S, Roth S, Scharstein D, Black M, Lewis JP, Szeliski R (2011) A database and evaluation methodology for optical flow. Int J Comput Vis 92(1):1–31

    Article  Google Scholar 

  13. Liu C, Yuen J, Torralba A (2011) Sift flow: dense correspondence across scenes and its applications. IEEE Trans Pattern Anal Mach Intell 33(5):978–994

    Article  Google Scholar 

  14. Wen J, Xu Y, Tang J, Zhan Y, Lai Z, Guo X (2015) Joint video frame set division and low-rank decomposition for background subtraction”. IEEE Trans Circuits Syst Video Technol 24(12):2034–2048

    Google Scholar 

  15. Zhong Z, Zhang B, Lu G, Zhao Y, Xu Y (2017) An adaptive background modeling method for foreground segmentation. IEEE Trans Intell Transp Syst 18(5):1109–1121

    Article  Google Scholar 

  16. Wren CR, Azarbayejani A, Darrell T, Pentland AP (1997) Pfinder: real-time tracking of the human body. IEEE Trans Pattern Anal Mach Intell 19(7):780–785

    Article  Google Scholar 

  17. Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. Proc IEEE Conf Comput Vis Pattern Recognit 2:246–252

    Google Scholar 

  18. Chen M, Wei X, Yang Q, Li Q, Wang G, Yang MH (2017) Spatiotempora. IEEE Trans Pattern Anal Mach Intell 40(6):1518–1525

    Article  Google Scholar 

  19. Zhong Z, Wen J, Zhang B, Xu Y (2019) A general moving detecting method using dual-target nonparametric background model. Knowl Based Syst 164(15):85–95

    Article  Google Scholar 

  20. Berjón D, Cuevas C, Morán F, García N (2018) Real-time nonparametric background subtraction with tracking-based foreground update. Pattern Recognit 74:156–170

    Article  Google Scholar 

  21. McFarlane N, Schofield C (1995) Segmentation and tracking of piglets in images. Mach Vis Appl 8(3):187–193

    Article  Google Scholar 

  22. Haritaoglu I, Harwood D, Davis LS (2000) W4: real-time surveillance of people and their activities. IEEE Trans Pattern Anal Mach Intell 22(8):809–830

    Article  Google Scholar 

  23. He J, Balzano L, Lui J (2011) Online robust subspace tracking from partial information. arXiv preprint. arXiv:1109.3827

  24. Xu J, Ithapu V, Mukherjee L, Rehg J, Singhy V (2013) GOSUS: grassmannian online subspace updates with structured sparsity. In: International conference on computer vision, ICCV

  25. Wren C, Porikli F (2005) Waviz: spectral similarity for object detection. In: IEEE international workshop on performance evaluation of tracking and surveillance, PETS 2005

  26. Gao T, Liu Z, Gao W, Zhang J (2008) A robust technique for background subtraction in traffic video. In: International conference on neural information processing, ICONIP, pp 736–744

  27. Han G, Wang J, Cai X (2017) Background subtraction based on modified online robust principal component analysis. Int J Mach Learn Cybern 8(6):1839–1852

    Article  Google Scholar 

  28. Bouwmans T, Sobral A, Javed S, Jung SK, Zahzah EH (2018) Decomposition into low-rank plus additive matrices for background/foreground separation: a review for a comparative evaluation with a large-scale dataset. Comput Sci Rev 23:1–71

    Article  Google Scholar 

  29. Zhou X, Yang C, Yu W (2012) Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(3):597–610

    Article  Google Scholar 

  30. Li L, Wang P, Hu Q, Cai S (2014) Efficient background modeling based on sparse representation and outlier iterative removal. IEEE Trans Circ Syst Video Technol 26(2):278–289

    Article  Google Scholar 

  31. Cao W, Wang Y, Sun J, Meng D, Yang C, Cichocki A, Xu Z (2016) Total variation regularized tensor RPCA for background subtraction from compressive measurements. IEEE Trans Image Process 25(9):4075–4090

    Article  MathSciNet  Google Scholar 

  32. Maddalena L, Petrosino A (2008) A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans Image Process 17(7):1168–1177

    Article  MathSciNet  Google Scholar 

  33. Huang S, Chen B (2013) Highly accurate moving object detection in variable bit rate video-based traffic monitoring systems. IEEE Trans Neural Netw Learn Syst 24(12):1920–1931

    Article  Google Scholar 

  34. Cucchiara R, Grana C, Piccardi M, Prati A (2013) Detecting moving objects, ghosts, and shadows in video streams”. IEEE Trans Pattern Anal Mach Intell 25(10):1337–1342

    Article  Google Scholar 

  35. Jodoin PM, Mignotte M, Konrad J (2007) Statistical background subtraction using spatial cues. IEEE Trans Circ Syst Video Technol 17(12):1758–1763

    Article  Google Scholar 

  36. Barnich O, Van Droogenbroeck M (2011) ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20(6):1709–1724

    Article  MathSciNet  Google Scholar 

  37. Maddalena L, Petrosino A (2012) The SOBS algorithm: What are the limits? In: IEEE Computer society conference on computer vision and pattern recognition workshops, vol 11, pp 21–26

  38. St-Charles PL, Bilodeau GA, Bergevin R (2016) Universal background subtraction using word consensus models. IEEE Trans Image Process 25(10):4768–4781

    Article  MathSciNet  Google Scholar 

  39. Oliver NM, Rosario B, Pentland AP (2000) A Bayesian computer vision system for modeling human interactions. Comput Vis Syst First Int Conf 22:255–272

    Google Scholar 

  40. Hofmann M, Tiefenbacher P, Rigoll G (2012) Background segmentation with feedback: the pixel-based adaptive segmenter. In: Proceedings of IEEE conference on computer vision and pattern recognition workshops, pp 38–43

  41. St-Charles PL, Bilodeau GA, Bergevin R (2015) Subsense: a universal change detection method with local adaptive sensitivity. IEEE Trans Image Process 24(1):359–373

    Article  MathSciNet  Google Scholar 

  42. Ge W, Guo Z, Dong Y, Chen Y (2016) Dynamic background estimation and complementary learning for pixel-wise foreground/background segmentation. Pattern Recognit 59:112–125

    Article  Google Scholar 

  43. Ma W, Jiao L, Gong M, Li C (2014) Image change detection based on an improved rough fuzzy c-means clustering algorithm. Int J Mach Learn Cybern 5(3):369–377

    Article  Google Scholar 

Download references

Acknowledgements

The paper would express sincere appreciation to the from Beijing education science Project (No. SM201810038006); Project supported by Key Teachers for Capital University of economics and business.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianmin Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Ma, X. Adaptive random-based self-organizing background subtraction for moving detection. Int. J. Mach. Learn. & Cyber. 11, 1267–1276 (2020). https://doi.org/10.1007/s13042-019-01037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-019-01037-x

Keywords

Navigation