Skip to main content
Log in

Correntropy metric-based robust low-rank subspace clustering for motion segmentation

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The subspace clustering methods for motion segmentation are widely used in the field of computer vision. However, the existing methods ignore the low-rank property of motion trajectory with nonlinear structure and are sensitive to non-Gaussian noise. To this end, we seek to improve the performance of motion segmentation by effectively modeling some important characteristics of the motion trajectories, such as nonlinear structure and contained non-Gaussian noise. Specifically, we propose to use kernel function to model motion trajectory, design a variant of the correntropy-induced metric to measure noise, and integrate the block diagonal regularizer into the kernel subspace clustering to strengthen the block diagonal structure of the learned affinity matrix. More importantly, we propose a unified rank-constrained block diagonal subspace clustering method for motion segmentation, which can handle not only rigid body motion segmentation, but also non-rigid motion segmentation. And we further extend this method to deal with various noises in motion data, such as missing trajectories, corrupted trajectory and outlying trajectory. An effective algorithm HQ& AM, which is integrated by Half-quadratic theory and alternating minimization, is designed to optimize these models. Experimental results on several commonly used motion datasets indicate the effectualness and robustness of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://www.vision.jhu.edu/data/hopkins155/.

References

  1. Huang S, Xu Z, Lv J (2018) Adaptive local structure learning for document co-clustering. Knowl Based Syst 148:74–84

    Article  Google Scholar 

  2. Yan W, Zhang B, Ma S, Yang Z (2017) A novel regularized concept factorization for document clustering. Knowl Based Syst 135:147–158

    Article  Google Scholar 

  3. Xue X, Zhang X, Feng X, Sun H, Chen W, Liu Z (2020) Robust subspace clustering based on non-convex low-rank approximation and adaptive kernel. Inf Sci 513:190–205

    Article  MathSciNet  Google Scholar 

  4. Borgi MA, Nguyen TP, Labate D, Amar CB (2018) Statistical binary patterns and post-competitive representation for pattern recognition. Int J Mach Learn Cybern 9(6):1023–1038

    Article  Google Scholar 

  5. Chen L, Guo G (2019) Ordered smooth representation clustering. Int J Mach Learn Cybern 10(11):3301–3311

    Article  Google Scholar 

  6. Chen W, Zhang E, Zhang Z (2016) A Laplacian structured representation model in subspace clustering for enhanced motion segmentation. Neurocomputing 208(Oct 5):174–182

    Google Scholar 

  7. Cheng B, Liu G, Wang J, Huang Z, Yan S (2011) Multi-task low-rank affinity pursuit for image segmentation. In: 2011 International conference on computer vision, IEEE, pp 2439–2446

  8. Costeira JP, Kanade T (1998) A multi-body factorization method for independently moving objects. Int J Comput Vis 29(3):159–179

    Article  Google Scholar 

  9. Dattorro J (2010) Convex optimization & Euclidean distance geometry. Lulu. com

  10. Elhamifar E, Vidal R (2012) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  11. Gear CW (1998) Multibody grouping from motion images. Int J Comput Vis 29(2):133–150

    Article  Google Scholar 

  12. Gruber A, Weiss Y (2004) Multibody factorization with uncertainty and missing data using the em algorithm. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004

  13. He R, Tan T, Wang L, Zheng WS (2012) l2, 1 regularized correntropy for robust feature selection. In: 2012 IEEE conference on computer vision and pattern recognition

  14. He R, Tan T, Wang L, Zheng WS (2012) l2, 1 regularized correntropy for robust feature selection. In: 2012 IEEE conference on computer vision and pattern recognition, IEEE, pp 2504–2511

  15. Huang P, Hilton A, Starck J (2009) Human motion synthesis from 3d video. In: 2009 IEEE conference on computer vision and pattern recognition, IEEE, pp 1478–1485

  16. Huang T, Wang S, Zhu W (2020) An adaptive kernelized rank-order distance for clustering non-spherical data with high noise. Int J Mach Learn Cybern 11(8):1735–1747

    Article  Google Scholar 

  17. Ichimura N (1999) Motion segmentation based on factorization method and discriminant criterion. Proceedings of the seventh IEEE international conference on computer vision, vol 1. IEEE, pp 600–605.

  18. Ji P, Li H, Salzmann M, Zhong Y (2016) Robust multi-body feature tracker: a segmentation-free approach. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3843-3851

  19. Ji P, Salzmann M, Li H (2015) Shape interaction matrix revisited and robustified: efficient subspace clustering with corrupted and incomplete data. In: Proceedings of the IEEE international conference on computer Vision, pp 4687–4695

  20. Ji P, Reid I, Garg R, Li H, Salzmann M (2017) Low-rank kernel subspace clustering. arXiv preprint arXiv:1707.04974 1

  21. Jiang Z, Lin Z, Davis L (2012) Recognizing human actions by learning and matching shape-motion prototype trees. IEEE Trans Pattern Anal Mach Intell 34(3):533–547

    Article  Google Scholar 

  22. Zheng J, Jiang Z, Chellappa R (2016) Cross-view action recognition via transferable dictionary learning. IEEE Trans Image Proc 25(6):2542–2556

    Article  MathSciNet  Google Scholar 

  23. Kanatani K, Sugaya Y (2003) Multi-stage optimization for multi-body motion segmentation. In: Australia–Japan advanced workshop on computer vision, vol 2. Citeseer, pp 7

  24. Kanatani Ki (2001) Motion segmentation by subspace separation and model selection. In: Proceedings eighth IEEE international conference on computer vision, vol 2. ICCV 2001, IEEE, pp 586–591

  25. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892

    Article  Google Scholar 

  26. Keuper M, Tang S, Andres B, Brox T, Schiele B (2019) Motion segmentation and multiple object tracking by correlation co-clustering. IEEE Trans Pattern Anal Mach Intell 42:140–153

    Article  Google Scholar 

  27. Li S, Li K, Fu Y (2015) Temporal subspace clustering for human motion segmentation. In: Proceedings of the IEEE international conference on computer vision, pp 4453–4461

  28. Li Z, Guo J, Cheong LF, Zhou SZ (2013) Perspective motion segmentation via collaborative clustering. In: Proceedings of the IEEE international conference on computer vision, pp 1369–1376

  29. Lin G, Zhu H, Kang X, Fan C, Zhang E (2014) Feature structure fusion and its application. Inf Fusion 20:146–154

    Article  Google Scholar 

  30. Lin G, Zhu H, Kang X, Miu Y, Zhang E (2015) Feature structure fusion modelling for classification. Image Process Iet 9(10):883–888

    Article  Google Scholar 

  31. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  32. Lu C, Tang J, Lin M, Lin L, Yan S, Lin Z (2013) Correntropy induced l2 graph for robust subspace clustering. In: Proceedings of the IEEE international conference on computer vision, pp 1801–1808

  33. Lu C, Feng J, Lin Z, Mei T, Yan S (2018) Subspace clustering by block diagonal representation. IEEE Trans Pattern Anal Mach Intell 41(2):487–501

    Article  Google Scholar 

  34. Lu CY, Min H, Zhao ZQ, Zhu L, Huang DS, Yan S (2012) Robust and efficient subspace segmentation via least squares regression. In: European conference on computer vision, Springer, pp 347–360

  35. Lu J, Wang G, Moulin P (2014a) Human identity and gender recognition from gait sequences with arbitrary walking directions. IEEE Trans Inf Forensics Secur 9(1):51–61

    Article  Google Scholar 

  36. Lu J, Zhou X, Tan YP, Shang Y (2014b) Neighborhood repulsed metric learning for kinship verification. IEEE Trans Pattern Anal Mach Intell 36(2):331–345

    Article  Google Scholar 

  37. Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. In: Advances in neural information processing systems, pp 849–856

  38. Patel VM, Vidal R (2014) Kernel sparse subspace clustering. In: 2014 IEEE international conference on image processing (icip), IEEE, pp 2849–2853

  39. Ran He, Yingya Zhang, Zhenan Sun, Qiyue Yin (2015) Robust subspace clustering with complex noise. IEEE Trans Image Process Publ IEEE Signal Process Soc 24(11):4001–13

    Article  MathSciNet  Google Scholar 

  40. Rao S, Tron R, Vidal R, Ma Y (2010) Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. IEEE Trans Pattern Anal Mach Intell 32(10):1832–1845

    Article  Google Scholar 

  41. Ryoo MS, Aggarwal JK (2009) Spatio-temporal relationship match: video structure comparison for recognition of complex human activities. In: 2009 IEEE 12th international conference on computer vision, IEEE, pp 1593–1600

  42. Schölkopf B, Smola A, Müller K (2008) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

    Article  Google Scholar 

  43. Peng S, Ser W, Chen B, Sun L, Lin Z (2018) Correntropy based graph regularized concept factorization for clustering. Neurocomput 316:34–48

    Article  Google Scholar 

  44. Tron R, Vidal R (2007) A benchmark for the comparison of 3-d motion segmentation algorithms. In: 2007 IEEE conference on computer vision and pattern recognition, IEEE, pp 1–8

  45. Vidal R, Favaro P (2014) Low rank subspace clustering (LRSC). Pattern Recognit Lett 43:47–61

    Article  Google Scholar 

  46. Vidal R, Tron R, Hartley R (2008) Multiframe motion segmentation with missing data using powerfactorization and gpca. pp 85–105

  47. Vidal R, Ma Y, Sastry S (2012) Generalized principal component analysis (GPCA). IEEE Trans Pattern Anal Mach Intell 27(12):1945–1959

    Article  Google Scholar 

  48. Wang L, Ding Z, Fu Y (2018) Learning transferable subspace for human motion segmentation. In: Proceedings of the AAAI conference on artificial intelligence, vol 32

  49. Wang L, Ding Z, Fu Y (2019) Low-rank transfer human motion segmentation. IEEE Trans Image Process 28(2):1023–1034

    Article  MathSciNet  Google Scholar 

  50. Wang L, Ding S, Wang Y, Ding L (2021) A robust spectral clustering algorithm based on gridpartition and decision-graph. Int J Mach Learn Cybern 12(5):1243–1254

    Article  Google Scholar 

  51. Wang Q, Chen G (2017) Fuzzy soft subspace clustering method for gene co-expression network analysis. Int J Mach Learn Cybern 8(4):1157–1165

    Article  Google Scholar 

  52. Weifeng L, Pokharel PP, Principe JC (2007) Correntropy: properties and applications in non-gaussian signal processing. IEEE Trans Signal Process 55(11):5286–5298

    Article  MathSciNet  Google Scholar 

  53. Yan J, Pollefeys M (2006) A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: European conference on computer vision, Springer, pp 94–106

  54. Yan Y, Ricci E, Liu G, Sebe N (2015) Egocentric daily activity recognition via multitask clustering. IEEE Trans Image Process 24(10):2984–2995

    Article  MathSciNet  Google Scholar 

  55. Yan Y, Yang Y, Deyu M, Liu G, Tong W, Hauptman A, Sebe N (2015) Event oriented dictionary learning for complex event detection. IEEE Trans Image Process A Publ IEEE Signal Process Soc 24(6):1867

    Article  MathSciNet  Google Scholar 

  56. Yao J, Cao X, Zhao Q, Meng D, Xu Z (2018) Robust subspace clustering via penalized mixture of gaussians. Neurocomput 278:4–11

    Article  Google Scholar 

  57. Yin M, Guo Y, Gao J, He Z, Xie S (2016) Kernel sparse subspace clustering on symmetric positive definite manifolds. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp 5157–5164

  58. Yinfeng M, Jiye L, Fuyuan C, Yijun H (2018) A new distance with derivative information for functional k-means clustering algorithm. Inf Sci 463:166–185

    MATH  Google Scholar 

  59. You C, Robinson D, Vidal R (2016) Scalable sparse subspace clustering by orthogonal matching pursuit. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3918–3927

  60. Zhang X, Gao H, Li G, Zhao J, Huo J, Yin J, Liu Y, Zheng L (2018) Multi-view clustering based on graph-regularized nonnegative matrix factorization for object recognition. Inform Sci 432:463–478

    Article  MathSciNet  Google Scholar 

  61. Zhu H, Member IEEE, Vial R, Lu S (2018) Yotube: searching action proposal via recurrent and static regression networks. IEEE Trans Image Process Publ IEEE Signal Process Soc 27(6):2609

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Sichuan Science and Technology Program (Grant nos. 2020YJ0432, 2020YFS0360, 2019YJ0309), the National Natural Science Foundation of China (Grant no. 62102331), Innovative Research Group Project of the National Natural Science Foundation of China. We want to thank Canyi Lu for sharing the code for LSR, BDR-B and BDR-Z. And we thank J. Pan, Chong You and Wang L, who provide the code for LRKSC, SSC-OMP and LRTSC respectively. We also thank anonymous commenters for their substantive suggestions to improve our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Zhang, X., Liu, Z. et al. Correntropy metric-based robust low-rank subspace clustering for motion segmentation. Int. J. Mach. Learn. & Cyber. 13, 1425–1440 (2022). https://doi.org/10.1007/s13042-021-01456-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-021-01456-9

Keywords

Navigation