Skip to main content
Log in

Global structure-guided neighborhood preserving embedding for dimensionality reduction

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Graph embedding is one of the most efficient dimensionality reduction methods in machine learning and pattern recognition. Many local or global graph embedding methods have been proposed and impressive results have been achieved. However, little attention has been paid to the methods that integrate both local and global structural information without constructing complex graphs. In this paper, we propose a simple and effective global structure guided neighborhood preserving embedding method for dimensionality reduction called GSGNPE. Specifically, instead of constructing global graph, principal component analysis (PCA) projection matrix is first introduced to extract the global structural information of the original data, and then the induced global information is integrated with local neighborhood preserving structure to generate a discriminant projection. Moreover, the \(L_{2,1}\)-norm regularization is employed in our method to enhance the robustness to occlusion. Finally, we propose an iterative optimization algorithm to solve the proposed problem, and its convergence is also theoretically analyzed. Extensive experiments on four face and six non-face benchmark data sets demonstrate the competitive performance of our proposed method in comparison with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://www.comp.polyu.edu.hk/~biometrics/FKP.htm.

  2. http://www.cs.nyu.edu/roweis/data.html.

  3. http://archive.ics.uci.edu/ml.

References

  1. Li Y, Chai Y, Yin H et al (2020) A novel feature learning framework for high-dimensional data classification. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-020-01188-2

    Article  Google Scholar 

  2. Hu Q, Zhang L, Zhou Y et al (2018) Large-scale multimodality attribute reduction with multi-kernel fuzzy rough sets. IEEE Trans Fuzzy Syst 26(1):226–238

    Article  Google Scholar 

  3. Li J, Mei C, Xu W et al (2015) Concept learning via granular computing: a cognitive viewpoint. Inf Sci 298:447–467

    Article  MathSciNet  MATH  Google Scholar 

  4. Qian J, Yang J, Xu Y et al (2020) Image decomposition based matrix regression with applications to robust face recognition. Pattern Recognit 102:107204

    Article  Google Scholar 

  5. Shang R, Chang J, Jiao L et al (2019) Unsupervised feature selection based on self-representation sparse regression and local similarity preserving. Int J Mach Learn Cybern 10:757–770

    Article  Google Scholar 

  6. Wang X, Dong L, Yan J (2012) Maximum ambiguity-based sample selection in fuzzy decision tree induction. IEEE Trans Knowl Data Eng 24:1491–1505

    Article  Google Scholar 

  7. Wu W, Qian Y, Li T et al (2017) On rule acquisition in incomplete multi-scale decision tables. Inf Sci 378:282–302

    Article  MathSciNet  MATH  Google Scholar 

  8. Shahdoosti H, Tabatabaei Z (2020) Object-based feature extraction for hyperspectral data using firefly algorithm. Int J Mach Learn Cybern 11:1277–1291

    Article  Google Scholar 

  9. Fang X, Teng S, Lai Z et al (2018) Robust latent subspace learning for image classification. IEEE Trans Neural Netw Learn Syst 29(6):2502–2515

    Article  MathSciNet  Google Scholar 

  10. Wang X, He Y (2016) Learning from uncertainty for big data: future analytical challenges and strategies. IEEE Syst Man Cybern Mag 2:26–31

    Article  Google Scholar 

  11. Qian J, Yang J, Tai Y et al (2016) Exploring deep gradient information for biometric image feature representation. Neurocomputing 213:162–171

    Article  Google Scholar 

  12. Ma M, Deng T, Wang N et al (2019) Semi-supervised rough fuzzy Laplacian eigenmaps for dimensionality reduction. Int J Mach Learn Cybern 10:397–411

    Article  Google Scholar 

  13. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Article  Google Scholar 

  14. Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  15. Cai D, He X, Zhou K et al (2007) Locality sensitive discriminant analysis. In: Proceedings of 2007 international joint conference on artificial intelligence (IJCAI07), pp 1713–1726

  16. Park S, Kwak N (2018) Independent component analysis by lp-norm optimization. Pattern Recognit 76:752–760

    Article  Google Scholar 

  17. Mi J, Zhang Y, Li Y et al (2020) Generalized two-dimensional PCA based on \(\ell _{2, p}\)-norm minimization. Int J Mach Learn Cybern 11:2421–2438

    Article  Google Scholar 

  18. Hu Q, Zhang S, Xie Z et al (2014) Noise model based \(\nu\)-support vector regression with its application to short-term wind speed forecasting. Neural Netw 57:1–11

    Article  MATH  Google Scholar 

  19. Lai Z, Bao J, Kong H et al (2020) Discriminative low-rank projection for robust subspace learning. Int J Mach Learn Cybern 11:2247–2260

    Article  Google Scholar 

  20. Jenssen R (2010) Kernel entropy component analysis. IEEE Trans Pattern Anal Mach Intell 32(5):847–860

    Article  Google Scholar 

  21. Xiong F, Gou M, Camps O et al (2014) Person re-identification using kernel-based metric learning methods. In: Proceedings of the European conference on computer vision, pp 1–16

  22. Li H, Jiang T, Zhang K (2004) Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw 17(1):157–165

    Article  Google Scholar 

  23. Tenenbaum J, De Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  24. Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  25. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  MATH  Google Scholar 

  26. Fang X, Xu Y, Li X et al (2018) Regularized label relaxation linear regression. IEEE Trans Neural Netw Learn Syst 29(4):1006–1018

    Article  Google Scholar 

  27. He X, Niyogi P (2003) Locality preserving projections. In: Proceedings of the 16th international conference on neural information processing systems, pp 153–160

  28. He X, Cai D, Yan S et al (2005) Neighborhood preserving embedding. In: Proceedings of the tenth IEEE international conference on computer vision (ICCV05), pp 1208–1213

  29. Pang Y, Zhang L, Liu Z et al (2005) Neighborhood preserving projections (NPP): a novel linear dimension reduction method. In: Proceedings of international conference on intelligent computing, pp 117–125

  30. Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43(1):331–341

    Article  MATH  Google Scholar 

  31. Cai W (2017) A dimension reduction algorithm preserving both global and local clustering structure. Knowl Based Syst 118:191–203

    Article  Google Scholar 

  32. Fang X, Han N, Wong W et al (2019) Flexible affinity matrix learning for unsupervised and semisupervised classification. IEEE Trans Neural Netw Learn Syst 30(4):1133–1149

    Article  MathSciNet  Google Scholar 

  33. Yin M, Gao J, Lin Z (2016) Laplacian regularized low-rank representation and its applications. IEEE Trans Pattern Anal Mach Intell 38(3):504–517

    Article  Google Scholar 

  34. Liu Z, Shi K, Zhang K et al (2020) Discriminative sparse embedding based on adaptive graph for dimension reduction. Eng Appl Artif Intell 94:103758

    Article  Google Scholar 

  35. Shen X, Liu S, Bao B et al (2020) A generalized least-squares approach regularized with graph embedding for dimensionality reduction. Pattern Recognit 98:107023

    Article  Google Scholar 

  36. Gou J, Yi Z, Zhang D et al (2018) Sparsity and geometry preserving graph embedding for dimensionality reduction. IEEE Access 6:75748–75766

    Article  Google Scholar 

  37. Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15(2):265–286

    Article  MathSciNet  Google Scholar 

  38. Hu Q, Li L, Zhu P (2013) Exploring neighborhood structures with neighborhood rough sets in classification learning. In: Rough Sets and Intelligent Systems-Professor Zdzisław Pawlak in Memoriam, Springer, pp 277–307

  39. Qian J, Yang J, Zhang N et al (2014) Histogram of visual words based on locally adaptive regression kernels descriptors for image feature extraction. Neurocomputing 129:516–527

    Article  Google Scholar 

  40. Golub G, Van Loan C (1996) Matrix computations. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  41. Nie F, Huang H, Cai X et al (2010) Efficient and robust feature selection via joint \(\ell _{2,1}\)-norms minimization. In: Advances in neural information processing systems, pp 1813–1821

  42. Yang Y, Shen H, Ma Z et al (2011) \(\ell _{2,1}\)-norm regularized discriminative feature selection for unsupervised learning. In: Proceedings of the 22nd international joint conference on artificial intelligence, pp 1589–1594

  43. Lai Z, Mo D, Wong W et al (2018) Robust discriminant regression for feature extraction. IEEE Trans Cybern 48(8):2472–2484

    Article  Google Scholar 

  44. Wen J, Han N, Fang X et al (2019) Low-rank preserving projection via graph regularized reconstruction. IEEE Trans Cybern 49(4):1279–1291

    Article  Google Scholar 

  45. Nie F, Zhu W, Li X (2019) Structured graph optimization for unsupervised feature selection. IEEE Trans Knowl Data Eng 33(3):1210–1222

    Google Scholar 

  46. Phillips P, Moon H, Rizvi S et al (2000) The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104

    Article  Google Scholar 

  47. Martinez A (1998) The AR face database. CVC Tech. Report#24

  48. Sim T, Baker S, Bsat M (2002) The CMU pose, illumination, and expression (PIE) database. In: Proceedings of fifth IEEE international conference on automatic face gesture recognition, pp 53–58

  49. Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  50. Pohlert T (2014) The pairwise multiple comparison of mean ranks package (PMCMR). R Packag 27(2020):10

    Google Scholar 

  51. Benavoli A, Corani G, Mangili F (2016) Should we really use post-hoc tests based on mean-ranks. J Mach Learn Res 17(1):152–161

    MathSciNet  MATH  Google Scholar 

  52. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(2605):2579–2605

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Editor-in-Chief, editors and anonymous reviewers for their kind help and valuable comments. The work was supported in part by the National Natural Science Foundation of China (Nos. 61806127, 62076164, 61976145), in part by Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515011861), in part by Shenzhen Institute of Artificial Intelligence and Robotics for Society, in part by Shenzhen Science and Technology Program (No. JCYJ20210324094601005), and in part by the Bureau of Education of Foshan (Nos. 2019XJZZ05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Li, Y., Zhou, J. et al. Global structure-guided neighborhood preserving embedding for dimensionality reduction. Int. J. Mach. Learn. & Cyber. 13, 2013–2032 (2022). https://doi.org/10.1007/s13042-021-01502-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-021-01502-6

Keywords

Navigation