Skip to main content
Log in

Implementation of a Compact Traffic Signs Recognition System Using a New Squeezed YOLO

  • Published:
International Journal of Intelligent Transportation Systems Research Aims and scope Submit manuscript

Abstract

The importance of traffic signs cannot be overstated when it comes to road safety. The necessity for rapid and precise Traffic Sign classifier remains a challenge due to the complexity of traffic signs shapes and forms. In this paper, a real-time detector is presented for the German Traffic Sign Recognition Benchmark (GTSRB). GTSRB has 43 different classes with various shapes, forms, and colours. Their similarity is useful for object localisation but not for sign classification. In this article, a real-time detector for GTSRB is created using an upgraded compact YOLO-V4 Technique and implemented on the new NVIDIA Jetson Nano. To find and detect GTSRB pictures, a compact and efficient classifier is introduced. For the first time, this paper compares the detection and categorization of traffic signs using YOLO-V3 and 4, both regular and tiny.

Because most of real-time identification algorithms require a lot of processing power, the suggested compact classifier, which is based on the new YOLO-V4 Tiny, can recognize all 43 traffic signals with an average accuracy of 95.44% percent and a YOLO model size of just 9 MB. The GTSRB test dataset was used to validate this approach, which was then tested on the new Jetson Nano. In comparison to existing algorithms such as CNN, YOLO-V3, YOLO-V4, and Faster R-CNN, the suggested technique may successfully save more computational power and processing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Pires, C., Torfs, K., Areal, A., Goldenbeld, C., Vanlaar, W., Granié, M.-A., Stürmer, Y.A., Usami, D.S., Kaiser, S., Jankowska-Karpa, D., Nikolaou, D., Holte, H., Kakinuma, T., Trigoso, J., Van den Berghe, W., Meesmann, U.: Car drivers’ road safety performance: a benchmark across 32 countries. IATSS Re. 44(3), 166–179 (2020). https://doi.org/10.1016/j.iatssr.2020.08.002

    Article  Google Scholar 

  2. Cireşan, D., Meier, U., Masci, J., Schmidhuber, J.: An optimization approach for localization refinement of candidate traffic signs. Neural Netw. 32, 333–338 (2012a). https://doi.org/10.1016/j.neunet.2012.02.023

    Article  Google Scholar 

  3. Zhu, Z., Lu, J., Martin, R.R., Hu, S.: An optimization approach for localization refinement of candidate traffic signs. IEEE Trans Intell Transp Syst. 18(11), 3006–3016 (2017). https://doi.org/10.1109/tits.2017.2665647

    Article  Google Scholar 

  4. Han, C., Gao, G., Zhang, Y.: Real-time small traffic sign detection with revised faster-RCNN. Multimed Tools Appl. 78(10), 13263–13278 (2018). https://doi.org/10.1007/s11042-018-6428-0

    Article  Google Scholar 

  5. Lin, T.-Y., Dollár, P., Girshick, R., et al.: Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125 (2017). https://doi.org/10.1109/CVPR.2017.106

  6. Tai, S.-K., Dewi, C., Chen, R.-C., Liu, Y.-T., Jiang, X., Yu, H.: Deep learning for traffic sign recognition based on spatial pyramid pooling with scale analysis. Appl Sci. 10(19), 6997 (2020). https://doi.org/10.3390/app10196997

    Article  Google Scholar 

  7. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271 (2017). https://doi.org/10.1109/CVPR.2017.690

  8. Redmon, J., Farhadi, A.: “YOLO-V3: An incremental improvement,”, arXiv:1804.02767. [Online]. Available: https://arxiv.org/abs/1804.02767 (2018)

  9. Johner, F.M., Wassner, J.: "Efficient Evolutionary Architecture Search for CNN Optimization on GTSRB," 2019 18th IEEE international conference on machine learning and applications (ICMLA), Boca Raton, FL, USA, pp. 56–61. (2019). doi: https://doi.org/10.1109/ICMLA.2019.00018

  10. Mogelmose, A., Trivedi, M.M., Moeslund, T.B.: Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey. IEEE Trans. Intell. Transp. Syst. 13(4), 1484–1497 (2012). https://doi.org/10.1109/tits.2012.2209421

  11. Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: "Detection of Traffic Signs in Real-World Images: the German Traffic Sign Detection Benchmark," the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, pp. 1-8. (2013). https://doi.org/10.1109/IJCNN.2013.6706807

  12. Jin, J., Fu, K., Zhang, C.: Traffic sign recognition with hinge loss trained convolutional neural networks. IEEE Trans. Intell. Transp. Syst. 15(5), 1991–2000 (2014). https://doi.org/10.1109/TITS.2014.2308281

  13. Zhang, J., Wang, W., Lu, C., Wang, J., Sangaiah, A.K.: Lightweight deep network for traffic sign classification. Ann Telecommun. 75(7–8), 369–379 (2019b). https://doi.org/10.1007/s12243-019-00731-9

    Article  Google Scholar 

  14. Zhang, J., Jin, X., Sun, J., Wang, J., Sangaiah, A.K.: Spatial and semantic convolutional features for robust visual object tracking. Multimed Tools Appl. 79(21–22), 15095–15115. (2018). https://doi.org/10.1007/s11042-018-6562-8

    Article  Google Scholar 

  15. Zhang, J., Xie, Z., Sun, J., Zou, X., Wang, J.: A cascaded R-CNN with multiscale attention and imbalanced samples for traffic sign detection. IEEE Access. 8, 29742–29754. (2020). https://doi.org/10.1109/access.2020.2972338

    Article  Google Scholar 

  16. Zhang, J., Jin, X., Sun, J., Wang, J., Li, K.: Dual model learning combined with multiple feature selection for accurate visual tracking. IEEE Access. 7, 43956–43969 (2019). https://doi.org/10.1109/access.2019.2908668

    Article  Google Scholar 

  17. Zhang, J., Wu, Y., Feng, W., Wang, J.: Spatially attentive visual tracking using multi-model adaptive response fusion. IEEE Access. 7, 83873–83887 (2019). https://doi.org/10.1109/ACCESS.2019.2924944

    Article  Google Scholar 

  18. García-Garrido, M.Á., Sotelo, M.Á., Martín-Gorostiza, E.: Fast Road Sign Detection Using Hough Transform for Assisted Driving of Road Vehicles. Lect Notes Comput Sci. 543–548 (2005). https://doi.org/10.1007/11556985_71

  19. Yakimov, P., Fursov, V.: Traffic signs detection and tracking using modified hough transform. In: 2015 12th International Joint Conference on e-Business and Telecommunications (ICETE), pp. 22–28. IEEE (2015). https://doi.org/10.5220/0005543200220028

  20. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

  21. Bochkovskiy, A., Wang, C.-Y., Mark Liao, H.-Y.: YOLO-V4: Optimal speed and accuracy of object detection, arXiv:2004.10934 [Online]. Available: https://arxiv.org/abs/2004.10934 (2020)

  22. Khnissi, K., Ben Jabeur, C., Seddik, H.: A smart mobile robot commands predictor using recursive neural network. Robot Auton Syst. 131, (2020). https://doi.org/10.1016/j.robot.2020.103593

  23. Khnissi, K., Seddik, C., Seddik, H.: Smart navigation of mobile robot using neural network controller. In: 2018 International Conference on Smart Communications in Network Technologies (SaCoNeT), pp. 205–210. IEEE (2018). https://doi.org/10.1109/SaCoNeT.2018.8585616

  24. Khnissi, K., Jabeur, C.B., Seddik, H.: 3D simulator for navigation of a mobile robot using simscape-SIMULINK. In: 2019 International Conference on Control, Automation and Diagnosis (ICCAD), p. 1–6. IEEE (2019). https://doi.org/10.1109/ICCAD46983.2019.9037958

  25. Carneiro, T., Medeiros Da NóBrega, R.V., Nepomuceno, T., Bian, G., De Albuquerque, V.H.C., Filho, P.P.R.: Performance analysis of Google Colaboratory as a tool for accelerating deep learning applications. IEEE Access. 6, 61677–61685 (2018). https://doi.org/10.1109/ACCESS.2018.2874767

    Article  Google Scholar 

  26. Fang, W., Wang, L., Ren, P.: Tinier-YOLO: a real-time object detection method for constrained environments. IEEE Access. 8, 1935–1944 (2020). https://doi.org/10.1109/access.2019.2961959

    Article  Google Scholar 

  27. Iandola, Forrest N, Han, Song, Moskewicz, Matthew W, Ashraf, Khalid, Dally, William J, Keutzer, Kurt; Squeezenet: Alexnet-level accuracy with 50x fewer parameters and < 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)

  28. Mazzia, V., Khaliq, A., Salvetti, F., Chiaberge, M.: Real-time apple detection system using embedded systems with hardware accelerators: an edge AI application. IEEE Access. 8, 9102–9114 (2020). https://doi.org/10.1109/ACCESS.2020.2964608

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Khnissi.

Ethics declarations

Conflict of Interest and Authorship Conformation Form

• All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

• This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue.

• The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

• The following authors have affiliations with organizations with direct or indirect financial interest in the subject matter discussed in the manuscript:

Author’s name

Affiliation

Email

Khaled Khnissi

ENSIT

khaledkhnissi@gmail.com

Chiraz Ben Jabeur

ENSIT

chirazbenjabeur@gmail.com

Hassene Seddik

ENSIT

seddikhassne@gmail.com

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khnissi, K., Jabeur, C.B. & Seddik, H. Implementation of a Compact Traffic Signs Recognition System Using a New Squeezed YOLO. Int. J. ITS Res. 20, 466–482 (2022). https://doi.org/10.1007/s13177-022-00304-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13177-022-00304-6

Keywords

Navigation