Skip to main content
Log in

Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

In this paper we address the problems of estimation and prediction when lifetime data following Burr type III distribution are observed under progressive type-I hybrid censoring. We first obtain maximum likelihood estimators of unknown parameters using expectation maximization and stochastic expectation maximization algorithms, and associated interval estimates using Fisher information matrix. We then obtain Bayes estimators based on non-informative and informative priors under squared error, entropy and Linex loss functions using the method of Tierney–Kadane and importance sampling technique, and associated highest posterior density interval estimates by making use of Chen and Shao method. We further predict the censored observations and interval estimates under classical and Bayesian approaches. Finally we analyze two real data sets, and conduct a simulation study to compare the performance of various proposed estimators and predictors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkasasbeh MR, Raqab MZ (2009) Estimation of the generalized logistic distribution parameters: comparative study. Stat Methodol 6(3):262–279

    Article  MATH  MathSciNet  Google Scholar 

  • Asgharzade A, Abdi M (2008) Point and interval estimation for the burr type iii distribution. J Iran Stat Soc 5:221–233

    Google Scholar 

  • Arabi Belaghi R, Asl MN, Singh S (2017) On estimating the parameters of the Burr XII model under progressive type-I interval censoring. J Stat Comput Simul 87(16):3132–3151

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N, Cramer E (2014) The art of progressive censoring. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bergander T, Luo Y, Hamza AB (2007) Software defects prediction using operating characteristic curves. In: IEEE international conference on information reuse and integration. pp 713–718

  • Bouguila N, Wang JH, Hamza AB (2010) Software modules categorization through likelihood and bayesian analysis of finite dirichlet mixtures. J Appl Stat 37(2):235–252

    Article  MathSciNet  Google Scholar 

  • Burr IW (1942) Cumulative frequency functions. Ann Math Stat 13(2):215–232

    Article  MATH  MathSciNet  Google Scholar 

  • Chen MH, Shao QM (1999) Monte carlo estimation of bayesian credible and hpd intervals. J Comput Gr Stat 8(1):69–92

    MathSciNet  Google Scholar 

  • Cohen AC (1963) Progressively censored samples in life testing. Technometrics 5(3):327–339

    Article  MATH  MathSciNet  Google Scholar 

  • Cramer E, Balakrishnan N (2013) On some exact distributional results based on type-i progressively hybrid censored data from exponential distributions. Stat Methodol 10(1):128–150

    Article  MATH  MathSciNet  Google Scholar 

  • Cramer E, Iliopoulos G (2010) Adaptive progressive type-II censoring. Test 19(2):342–358

    Article  MATH  MathSciNet  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc Ser B (Methodol) 39:1–38

    MATH  MathSciNet  Google Scholar 

  • Dey S, Singh S, Tripathi YM, Asgharzadeh A (2016) Estimation and prediction for a progressively censored generalized inverted exponential distribution. Stat Methodol 32:185–202

    Article  MATH  MathSciNet  Google Scholar 

  • Diebolt J, Celeux G (1993) Asymptotic properties of a stochastic em algorithm for estimating mixing proportions. Stoch Models 9(4):599–613

    Article  MATH  MathSciNet  Google Scholar 

  • Epstein B (1954) Truncated life tests in the exponential case. Ann Math Stat 25(3):555–564

    Article  MATH  MathSciNet  Google Scholar 

  • Golparvar L, Parsian A (2016) Inference on proportional hazard rate model parameter under type-i progressively hybrid censoring scheme. Commun Stat Theory Methods 45:7258–7274

    Article  MATH  MathSciNet  Google Scholar 

  • Kundu D, Joarder A (2006) Analysis of type-ii progressively hybrid censored data. Comput Stat Data Anal 50(10):2509–2528

    Article  MATH  MathSciNet  Google Scholar 

  • Lindley DV (1980) Approximate bayesian methods. Trabajos de estadística y de investigación operativa 31(1):223–245

    Article  MATH  MathSciNet  Google Scholar 

  • Louis TA (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc Ser B (Methodol) 44:226–233

    MATH  MathSciNet  Google Scholar 

  • Miller RG Jr (2011) Survival analysis, vol 66. Wiley, Hoboken

    Google Scholar 

  • Mokhlis NA (2005) Reliability of a stress-strength model with burr type iii distributions. Commun Stat Theory Methods 34(7):1643–1657

    Article  MATH  MathSciNet  Google Scholar 

  • Noori Asl M, Belaghi RA, Bevrani H (2016) On Burr XII distribution analysis under progressive type-ii hybrid censored data. Methodol Comput Appl Prob 19(2):665–683

    Article  MATH  MathSciNet  Google Scholar 

  • Pant MD, Headrick TC (2015) A characterization of the Burr type III and type XII distributions through the method of percentiles and the spearman correlation. Commun Stat Simul Comput 46:1611–1627

    Article  MATH  MathSciNet  Google Scholar 

  • Raqab M, Nagaraja H (1995) On some predictors of future order statistics. Metron 53(1–2):185–204

    MATH  MathSciNet  Google Scholar 

  • Sen T, Singh S, Tripathi YM (2019) Statistical inference for Lognormal distribution with type-I progressive hybrid censored data. Am J Math Manag Sci 38(1):70–95

    Google Scholar 

  • Singh S, Tripathi YM, Wu SJ (2015) On estimating parameters of a progressively censored lognormal distribution. J Stat Comput Simul 85(6):1071–1089

    Article  MathSciNet  Google Scholar 

  • Singh S, Tripathi YM (2015) Reliability sampling plans for a lognormal distribution under progressive first-failure censoring with cost constraint. Stat Pap 56(3):773–817

    Article  MATH  MathSciNet  Google Scholar 

  • Singh S, Tripathi YM (2016) Bayesian estimation and prediction for a hybrid censored lognormal distribution. IEEE Trans Reliab 65(2):782–795

    Article  Google Scholar 

  • Singh S, Tripathi YM (2018) Estimating the parameters of an inverse Weibull distribution under progressive type-I interval censoring. Stat Pap 59(1):21–56

    Article  MATH  MathSciNet  Google Scholar 

  • Tierney L, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81(393):82–86

    Article  MATH  MathSciNet  Google Scholar 

  • Tomer SK, Panwar M (2015) Estimation procedures for maxwell distribution under type-I progressive hybrid censoring scheme. J Stat Comput Simul 85(2):339–356

    Article  MathSciNet  Google Scholar 

  • Tregouet D, Escolano S, Tiret L, Mallet A, Golmard J (2004) A new algorithm for haplotype-based association analysis: the stochastic-em algorithm. Ann Hum Genet 68(2):165–177

    Article  Google Scholar 

  • Wang FK, Cheng Y (2010) EM algorithm for estimating the Burr XII parameters with multiple censored data. Qual Reliab Eng Int 26(6):615–630

    Article  Google Scholar 

  • Wang FK, Lee CW (2010) An m-estimator for estimating the extended burr type iii parameters with outliers. Commun Stat Theory Methods 40(2):304–322

    Article  MATH  MathSciNet  Google Scholar 

  • Wei GC, Tanner MA (1990) A monte carlo implementation of the em algorithm and the poor man’s data augmentation algorithms. J Am Stat Assoc 85(411):699–704

    Article  Google Scholar 

  • Zhang M, Ye Z, Xie M (2014) A stochastic em algorithm for progressively censored data analysis. Qual Reliab Eng Int 30(5):711–722

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the Editor and the Associate Editor for their suggestions. We are very grateful to four anonymous referees for carefully going through our manuscript, and their constructive comments have led significant improvements in the earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Arabi Belaghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned}&E_{1i}(\alpha , \beta ) \\&\quad = E\big (\ln (1+z_{(ij)}^{-\beta }) \mid z_{(ij)}> x_{(i)}\big ) \\&\quad = \frac{\alpha }{1-F(x_{(i)}; \alpha , \beta )} \int _{1}^{1+x_{(i)}^{-\beta }} u^{-(\alpha +1)} \ln u \, du,\\&E_{1T}(\alpha , \beta ) \\&\quad = E\big (\ln (1+z_{(Tj)}^{-\beta }) \mid z_{(Tj)}> T\big ) \\&\quad = \frac{\alpha }{1-F(T; \alpha , \beta )} \int _{1}^{1+T^{-\beta }} u^{-(\alpha +1)} \ln u \, du,\\&E_{2i}(\alpha , \beta ) \\&\quad = E\big (\ln z_{(ij)} \mid z_{(ij)}> x_{(i)}\big ) \\&\quad =\frac{\alpha }{\beta (1-F(x_{(i)}; \alpha , \beta ))}\\&\qquad \int _{1}^{1+x_{(i)}^{-\beta }} u^{-(\alpha +1)} \ln (u-1) \, du,\\&E_{2T}(\alpha , \beta ) \\&\quad = E\big (\ln z_{(Tj)} \mid z_{(Tj)}> T\big )\\&\quad = \frac{\alpha }{\beta (1-F(T; \alpha , \beta ))}\\&\qquad \int _{1}^{1+T^{-\beta }} u^{-(\alpha +1)} \ln (u-1) \, du,\\&E_{3i}(\alpha , \beta ) \\&\quad = E\Big (\frac{z_{(ij)}^{-\beta } \ln z_{(ij)}}{1+z_{(ij)}^{-\beta } } \mid z_{(ij)}> x_{(i)}\Big ) \\&\quad = \frac{\alpha }{\beta (1-F(x_{(i)}; \alpha , \beta ))}\\&\quad \int _{1+x_{(i)}^{-\beta }}^{1} u^{-(\alpha +2)} (u-1)\ln (u-1) \, du,\\&E_{3T}(\alpha , \beta ) \\&\quad = E\Big (\frac{z_{(Tj)}^{-\beta } \ln z_{(Tj)}}{1+z_{(Tj)}^{-\beta } } \mid z_{(Tj)} > T\Big ) \\&\quad =\frac{\alpha }{\beta (1-F(T; \alpha , \beta ))} \\&\qquad \int _{1+T^{-\beta }}^{1} u^{-(\alpha +2)} (u-1)\ln (u-1) \, du,\\&e_{1}(\mathcal {C}^*; \alpha , \beta ) \\&\quad = \frac{\alpha }{\beta (1-F(\mathcal {C}^* ; \alpha , \beta ))}\\&\qquad \int _{1}^{1+{\mathcal {C}^*}^{-\beta }}(u-1)\ln (u-1) u^{-(\alpha +2)} du,\\&e_{2}(\mathcal {C}^*; \alpha , \beta ) \\&\quad = \frac{\alpha {\mathcal {C}^*}^{-\beta }(1+{\mathcal {C}^*}^{-\beta })^{-(\alpha +1)}\ln \mathcal {C}^*}{\beta [1-F(\mathcal {C}^* ; \alpha , \beta )]^2}\\&\qquad \Big ( 1-F(\mathcal {C}^* ; \alpha , \beta ) - \alpha \ln (1+{\mathcal {C}^*}^{-\beta })\Big ),\\&e_{3}(\mathcal {C}^*; \alpha , \beta ) \\&\quad = \frac{\alpha }{\beta ^{2}[1-F(\mathcal {C}^* ; \alpha , \beta )]}\\&\qquad \int _{1}^{1+{\mathcal {C}^*}^{-\beta }} (u-1)(\ln (u-1))^{2} u^{-(\alpha +3)}du,\\&e_{4}(\mathcal {C}^*; \alpha , \beta ) \\&\quad = \frac{\alpha {\mathcal {C}^*}^{-\beta }(1+{\mathcal {C}^*}^{-\beta })^{-(\alpha +2)}\ln \mathcal {C}^*}{\beta [1-F(\mathcal {C}^* ; \alpha , \beta )]^{2}}\\&\qquad \Big (F(\mathcal {C}^* ; \alpha , \beta )-1+\alpha {\mathcal {C}^*}^{-\beta }\Big ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Arabi Belaghi, R. & Noori Asl, M. Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring. Int J Syst Assur Eng Manag 10, 746–764 (2019). https://doi.org/10.1007/s13198-019-00806-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-019-00806-9

Keywords

Mathematics Subject Classification

Navigation