Skip to main content
Log in

Reliability analysis of log-normal distribution with nonconstant parameters under constant-stress model

  • Original article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

Under constant-stress accelerated life test, the general progressive type-II censoring sample and the two parameters following the linear Arrhenius model, the point estimation and interval estimation of the two parameters log-normal distribution were discussed. The unknown parameters of the model as well as reliability and hazard rate functions are estimated by using Maximum likelihood (ML) and Bayesian methods. The maximum-likelihood estimates are derived by the Newton–Raphson method and the corresponding asymptotic variance is derived by the Fisher information matrix. Since the Bayesian estimates (BEs) of the unknown parameters cannot be expressed explicitly, the approximate BEs of the unknown parameters. The approximate highest posterior density confidence intervals are calculated. The practicality of the proposed method is illustrated by simulation study and real data application analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data used in this study can be obtained from the corresponding author when reasonably requested.

References

  • Anwar S (2014) Estimation of constant-stress partially accelerated life test plans for Rayleigh distribution using type-II censoring. Int J Eng Sci Res Technol 3(9):327–332

    Google Scholar 

  • Balakrishnan N, Aggarwala R (2000) Progressively censoring: theory. In: Methods and applications. Birkhäuser, Boston

  • Boyko KC, Gerlach DL (1989) Time dependent dielectric breakdown of 210A oxides. In: 27th International reliability physics symposium, pp 1–8

  • Chen M, Shao Q (1999) Monte Carlo estimation of Bayesian credible and HPD intervals. J Comput Graph Stat 8(1):69–92

    MathSciNet  Google Scholar 

  • Gilks WR, Wild P (1992) Adaptive rejection sampling for Gibbs sampling. Appl Stat 41(2):337–348

    Article  Google Scholar 

  • Hiergeist P, Spizer A, Rohl S (1989) Lifetime of oxide and oxide-nitro-oxide dielectrics within trench capacitors for DRAMs. IEEE Trans Electron Devices 36(5):913–919

    Article  Google Scholar 

  • Ismail AA (2015) Bayesian estimation under constant-stress Partially accelerated life test for Pareto distribution with type-I censoring. Strength Mater 47(4):633–641

    Article  Google Scholar 

  • Kimber AC (1990) Exploratory data analysis for possibly censored data from skewed distribution. J R Stat Soc Appl Stat 39(1):21–30

    MathSciNet  MATH  Google Scholar 

  • Lawless JF (2003) Statistical models and methods for lifetime data. Wiley, Hoboken

    MATH  Google Scholar 

  • Lv SS, Niu Z, Qu L, He S (2015) Reliability modeling of accelerated life tests with both random effects and nonconstant shape parameters. Qual Eng 27(3):329–340

    Article  Google Scholar 

  • Mahmoud MAW, El-Sagheer RM, Nagaty H (2017) Inference for constant-stress partially accelerated life test model with progressive type-II censoring scheme. J Stat Appl Probab 6(2):373–383

    Article  Google Scholar 

  • Meeter CA, Meeker WQ (1994) Optimum accelerated life test with a nonconstant scale parameter. Technometrics 36:71–83

    MATH  Google Scholar 

  • Nelson W (1984) Fitting of fatigue curves with constant standard deviation to data with runouts. J Test Eval 12(2):69–77

    Article  Google Scholar 

  • Seo JH, Jung M, Kim CM (2009) Design of accelerated life test sampling plans with a nonconstant shape parameters. Eur J Oper Res 197(2):659–666

    Article  MathSciNet  Google Scholar 

  • Shi YM, Jin L, Wei C, Yue H (2013) Constant-stress accelerated life test with competing risks under progressive type-II hybrid censoring. J Adv Mater Res 712–715(2):2080–2083

    Article  Google Scholar 

  • Wang L (2018) Estimation of exponential population with nonconstant parameters under constant-stress model. J Comput Appl Math 342:478–494

    Article  MathSciNet  Google Scholar 

  • Wang L (2018) Estimation of constant-stress accelerated life test for Weibull distribution with nonconstant shape parameter. J Comput Appl Math 343:539–555

    Article  MathSciNet  Google Scholar 

  • Xu A, Fu J, Tang Y, Guan Q (2016) Bayesian analysis of constant-stress accelerated life test for the Weibull distribution using noninformative priors. Appl Math Model 12(2):119–126

    MATH  Google Scholar 

  • Yan Z, Zhu T, Peng X, Li X (2017) Reliability analysis for multi-level stress testing with Weibull regression model under the general progressively type-II censored data. J Comput Appl Math 330:28–40

    Article  MathSciNet  Google Scholar 

  • Zheng G, Shi Y (2013) Statistical analysis in constant-stress accelerated life tests for generalized exponential distribution based on adaptive type-II progressive hybrid censored data. Chin J Appl Probab Stat 29(4):363–380

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and reviewers for their constructive suggestions to improve the paper.

Funding

This research is supported by National Natural Science Foundation of China (No. 11861049) and Natural Science Foundation of Inner Mongolia (No. 2020LH01002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zai-zai Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix  A

Appendix  A

Let \(\xi _i(\mu )=\frac{\ln x_{i:r_{i}+1}-\mu \theta _{1}^{\phi _{i}}}{\sigma {\theta _{2}}^{\phi _{i}}},\) \(\xi _{i:j}(\mu )=\frac{\ln x_{i:j}-\mu \theta _{1}^{\phi _{i}}}{\sigma {\theta _{2}}^{\phi _{i}}}, i=1,\ldots ,k,~j=r_{i}+1,\ldots ,m_i,\) we have that

$$\begin{aligned} \frac{\partial \log \pi (\mu | \sigma ,\theta _{1},\theta _{2},{\varvec{x}})}{\partial \mu }= & {} \sum \limits _{i=1}^{k}\frac{r_{i}\cdot \varphi [\xi _i(\mu )] \cdot \xi _i'(\mu )}{\Phi [\xi _i(\mu )]}\\&-\sum \limits _{i=1}^{k}\!\!\sum \limits _{j=r_{i}+1}^{m_{i}}\left\{ \xi _{i:j}(\mu )\cdot \xi _{i:j}'(\mu ) +\frac{R_{i:j}\cdot \varphi [\xi _{i:j}(\mu )]\cdot \xi _{i:j}'(\mu )}{1-\Phi [\xi _{i:j}(\mu )]} \right\} +\frac{\mathrm{d}log\pi (\mu )}{\mathrm{d}\mu }.\\ \frac{\partial ^2\log \pi (\mu | \sigma ,\theta _{1},\theta _{2},{\varvec{x}})}{\partial \mu ^2}= & {} \sum \limits _{i=1}^{k}r_{i}\cdot \frac{\partial \left( \frac{\varphi [\xi _i(\mu )]\cdot \xi _i'(\mu )}{\Phi [\xi _i(\mu )]}\right) }{\partial \mu }\\&-\sum \limits _{i=1}^{k}\!\!\sum \limits _{j=r_{i}+1}^{m_{i}} \left\{ \{\xi _{i:j}'(\mu )\}^2 + R_{i:j}\cdot \frac{\partial \Big (\frac{\varphi [\xi _{i:j}(\mu )]\cdot \xi _{i:j}'(\mu )}{1-\Phi [\xi _{i:j}(\mu )]}\Big )}{\partial \mu } \right\} +\frac{\mathrm{d}^2log\pi (\mu )}{\mathrm{d}\mu ^2}. \end{aligned}$$

First, in Eq. (31), \(\frac{\mathrm{d}^2log\pi (\mu )}{\mathrm{d}\mu ^2}\le 0\) because \(\pi (\mu )\) is log-concave. Next, we demonstrate that \(\frac{\partial \Big (\frac{\varphi [\xi _i(\mu )]\cdot \xi _i'(\mu )}{\Phi [\xi _i(\mu )]}\Big )}{\partial \mu }\le 0\) and \(\frac{\partial \Big (\frac{\varphi [\xi _{i:j}(\mu )]\cdot \xi _{i:j}'(\mu )}{1-\Phi [\xi _{i:j}(\mu )]}\Big )}{\partial \mu } \ge 0.\)

Without loss of generality, let \(A(\mu )=\frac{\ln x-\mu \theta _{1}^{\phi }}{\sigma {\theta _{2}}^{\phi }}\), we have that

$$\begin{aligned} A'(\mu )=-\frac{\theta _{1}^{{\phi }}}{\sigma {\theta _{2}}^{\phi }}<0,\quad \varphi '[A(\mu )]=\frac{{\mathrm{d}}\varphi [A(\mu )]}{{\mathrm{d}}A(\mu )}=-\varphi [A(\mu )]\cdot A(\mu ). \end{aligned}$$

And

$$\begin{aligned} \frac{\partial \Big (\frac{\varphi [A(\mu )]\cdot A'(\mu )}{\Phi [A(\mu )]}\Big )}{\partial \mu }= & {} \frac{\varphi '[A(\mu )]\cdot \{A'(\mu )\}^2\cdot \Phi [A(\mu )] -\{\varphi [A(\mu )]\cdot A'(\mu )\}^2}{\Phi ^2[A(\mu )]}\\= & {} \frac{-\varphi [A(\mu )]\cdot A(\mu ) \cdot \{A'(\mu )\}^2\cdot \Phi [A(\mu )] -\{\varphi [A(\mu )]\cdot A'(\mu )\}^2}{\Phi ^2[A(\mu )]}\\= & {} \frac{-\varphi [A(\mu )]\cdot \{A'(\mu )\}^2 \cdot \{A(\mu )\cdot \Phi [A(\mu )]+\varphi [A(\mu )]\}}{\Phi ^2[A(\mu )]}\\= & {} \frac{-\varphi [A(\mu )]\cdot \{A'(\mu )\}^2 \cdot g_1(\mu )}{\Phi ^2[A(\mu )]},\\ \end{aligned}$$

where \(g_1(\mu )=A(\mu )\cdot \Phi [A(\mu )]+\varphi [A(\mu )]\). Then

$$\begin{aligned} g'_1(\mu )= & {} A'(\mu )\cdot \Phi [A(\mu )] +A(\mu )\cdot \varphi [A(\mu )]\cdot A'(\mu ) -\varphi [A(\mu )]\cdot A(\mu )\cdot A'(\mu )\\= & {} A'(\mu )\cdot \Phi [A(\mu )]<0. \end{aligned}$$

Namely, \(g_1(\mu )\) is decreasing about \(\mu\). Apparently,

$$\begin{aligned} \lim _{\mu \rightarrow +\infty } A(\mu )=-\infty , \lim _{\mu \rightarrow +\infty }\Phi [A(\mu )]=0, \lim _{\mu \rightarrow +\infty }\varphi [A(\mu )]=0 \end{aligned}$$

By simply taking the limit, we can get

$$\begin{aligned} \lim _{\mu \rightarrow +\infty } A(\mu )\cdot \Phi [A(\mu )]= & {} \lim _{\mu \rightarrow +\infty } \frac{A(\mu )}{\frac{1}{\Phi [A(\mu )]}}\\= & {} \lim _{\mu \rightarrow +\infty } \frac{A'(\mu )}{\frac{-\varphi [A(\mu )]\cdot A'(\mu )}{\Phi ^2[A(\mu )]}}\\= & {} \lim _{\mu \rightarrow +\infty } \frac{-\Phi ^2[A(\mu )]}{\varphi [A(\mu )]}\\= & {} \lim _{\mu \rightarrow +\infty } \frac{2\Phi [A(\mu )]\cdot \varphi [A(\mu )]\cdot A'(\mu )}{\varphi [A(\mu )]\cdot A(\mu )\cdot A'(\mu )}\\= & {} \lim _{\mu \rightarrow +\infty } \frac{2\Phi [A(\mu )]}{ A(\mu )}\\= & {} 0. \end{aligned}$$

Therefore, \(g_1(\mu )\ge 0\). Thus, \(\frac{\partial \Big (\frac{\varphi [A(\mu )]\cdot A'(\mu )}{\Phi [A(\mu )]}\Big )}{\partial \mu }\le 0\).

$$\begin{aligned} \frac{\partial \Big (\frac{\varphi [A(\mu )]\cdot A'(\mu )}{1-\Phi [A(\mu )]}\Big )}{\partial \mu }= & {} \frac{\varphi '[A(\mu )]\cdot \{A'(\mu )\}^2\cdot \{1-\Phi [A(\mu )]\} +\{\varphi [A(\mu )]\cdot A'(\mu )\}^2}{\{1-\Phi [A(\mu )]\}^2}\\= & {} \frac{-\varphi [A(\mu )]\cdot A(\mu ) \cdot \{A'(\mu )\}^2\cdot \{1-\Phi [A(\mu )]\} +\{\varphi [A(\mu )]\cdot A'(\mu )\}^2}{\{1-\Phi [A(\mu )]\}^2}\\= & {} \frac{-\varphi [A(\mu )]\cdot \{A'(\mu )\}^2 \cdot \bigg (A(\mu )\cdot \{1-\Phi [A(\mu )]\}-\varphi [A(\mu )]\bigg )}{\{1-\Phi [A(\mu )]\}^2}\\= & {} -\frac{\varphi [A(\mu )]\cdot \{A'(\mu )\}^2 \cdot g_2(\mu )}{\{1-\Phi [A(\mu )]\}^2}.\\ \end{aligned}$$

where \(g_2(\mu )=A(\mu )\cdot \{1-\Phi [A(\mu )]\}-\varphi [A(\mu )]\), then

$$\begin{aligned} g'_2(\mu )= & {} A'(\mu )\cdot \{1-\Phi [A(\mu )]\} -A(\mu )\cdot \varphi [A(\mu )]\cdot A'(\mu ) +\varphi [A(\mu )]\cdot A(\mu )\cdot A'(\mu )\\= & {} A'(\mu )\cdot \{1-\Phi [A(\mu )]\}<0. \end{aligned}$$

Therefore, \(g_2(\mu )\) is decreasing about \(\mu\). Apparently, we have

$$\begin{aligned} \lim _{\mu \rightarrow +\infty } A(\mu )=-\infty , \lim _{\mu \rightarrow +\infty }\{1-\Phi [A(\mu )]\}=1, \lim _{\mu \rightarrow +\infty }\varphi [A(\mu )]=0. \end{aligned}$$

It indicates that

$$\begin{aligned} \lim _{\mu \rightarrow +\infty } g_2(\mu ) =-\infty . \end{aligned}$$

Further, we have

$$\begin{aligned} \lim _{\mu \rightarrow -\infty } A(\mu )=+\infty , \lim _{\mu \rightarrow -\infty }\{1-\Phi [A(\mu )]\}=0, \lim _{\mu \rightarrow -\infty }\varphi [A(\mu )]=0. \end{aligned}$$

Let’s do the simple limit again,

$$\begin{aligned} \lim _{\mu \rightarrow -\infty } g_2(\mu )= & {} \lim _{\mu \rightarrow +\infty }\frac{A(\mu )}{\frac{1}{\{1-\Phi [A(\mu )]\}}}\\= & {} \lim _{\mu \rightarrow +\infty }\frac{\{1-\Phi [A(\mu )]\}^2}{\varphi [A(\mu )]}\\= & {} \lim _{\mu \rightarrow +\infty }\frac{2\{1-\Phi [A(\mu )]\}\cdot \varphi [A(\mu )]\cdot A'(\mu )}{\varphi [A(\mu )]\cdot A(\mu )\cdot A'(\mu )}\\= & {} 0. \end{aligned}$$

We obtain that \(g_2(\mu )\le 0\), further \(\frac{\partial \Big (\frac{\varphi [A(\mu )]\cdot A'(\mu )}{1-\Phi [A(\mu )]}\Big )}{\partial \mu }\ge 0\). Hence, \(\frac{\partial ^2\log \pi (\mu |\sigma ,\theta _{1},\theta _{2},{\varvec{x}})}{\partial \mu ^2}\le 0\), namely, \(\pi (\mu |\sigma ,\theta _{1},\theta _{2},{\varvec{x}})\) is log-concave.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, W., Yan, Zz., Peng, Xy. et al. Reliability analysis of log-normal distribution with nonconstant parameters under constant-stress model. Int J Syst Assur Eng Manag 13, 818–831 (2022). https://doi.org/10.1007/s13198-021-01343-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-021-01343-0

Keywords

Navigation