Skip to main content
Log in

Autonomous Navigation for On-Orbit Servicing

  • Technical Contribution
  • Published:
KI - Künstliche Intelligenz Aims and scope Submit manuscript

Abstract

On-orbit servicing missions induce challenges for the rendezvous and docking system since a typical target satellite is not specially prepared for such a mission, can be partly damaged or even freely tumbling with lost attitude control. In contrast to manned spaceflight or formation flying missions, new sensors and algorithms have to be designed for relative navigation. Dependent on the distance to the target, optical sensors such as mono and stereo cameras as well as 3D sensors like laser scanners can be employed as rendezvous sensors. Navigation methods for far and close range and different verification methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benninghoff H, Boge T, Tzschichholz T (2012) Hardware-in-the-loop rendezvous simulation involving an autonomous guidance, navigation and control system. Adv Astronaut Sci 145:953–972

    Google Scholar 

  2. Benninghoff H, Tzschichholz T, Boge T, Gaias G (2013) A far range image processing method for autonomous tracking of an uncooperative target. In: Proceedings of the 12th symposium on advanced space technologies in robotics and automation. Noordwijk, The Netherlands

  3. Boge T, Benninghoff H, Tzschichholz T (2013) Visual navigation for on-orbit servicing missions. In: Proceedings of the 5th international conference on spacecraft formation flying missions and technologies. Munich, Germany

  4. Boge T, Rupp T, Landzettel K, Wimmer T, Mietner C, Bosse J, Thaler B (2009) Hardware in the loop simulator for rendezvous and docking maneuvers. In: Proceedings of the German aerospace congress of DGLR. Aachen, Germany

  5. Bombardelli C, Peláez J (2011) Ion beam shepherd for contactless space debris removal. J Guid Control Dyn 34(3):916–920

    Article  Google Scholar 

  6. D’Amico S, Ardaens JS, Gaias G, Benninghoff H, Schlepp B, Jørgensen JL (2013) Noncooperative rendezvous using angles-only optical navigation: system design and flight results. J Guid Control Dyn 36(6):1576–1595

    Article  Google Scholar 

  7. Du X, Liang B, Xu W, Qiu Y (2011) Pose measurement of large non-cooperative satellite based on collaborative cameras. Acta Astronaut 68(11–12):2047–2065

    Article  Google Scholar 

  8. Ellery A, Kreisel J, Sommer B (2008) The case for robotic on-orbit servicing of spacecraft: spacecraft reliability is a myth. Acta Astronaut 63(5–6):632–648

    Article  Google Scholar 

  9. Fehse W (2003) Automated rendezvous and docking of spacecraft. Cambridge Aerospace Series, Washington, DC

    Book  Google Scholar 

  10. Jasiobedzki P, Se S, Pan T, Umasuthan M, Greenspan M (2005) Autonomous satellite rendezvous and docking using LIDAR and model based vision. In: Proceedings of the SPIE 5798, Spaceborne Sensors II, vol 54

  11. Jørgensen JL, Benn M (2010) VBS–the optical rendezvous and docking sensor for PRISMA. Nordic Space

  12. Julier S, Uhlmann J (1995) A new approach for filtering nonlinear systems. In: Proceedings of 1995 American control conference, vol 3

  13. Julier S, Uhlmann J (1997) A new extension of the kalman filter to nonlinear systems. In: Proceedings of AeroSence: the 11th international symposium on aerospace/defense sensing, simulations and controls, vol 3

  14. Kaiser C, Sjöberg F, Delcura JM, Eilertsen B (2008) SMART-OLEV–an orbital life extension vehicle for servicing commercial spacecrafts in GEO. Acta Astronaut 63(1–4):400–410

    Article  Google Scholar 

  15. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 83:35–45

    Article  Google Scholar 

  16. Levenberg K (1944) A method for the solution of certain problems in least squares. Q Appl Math 2:164–168

    MATH  MathSciNet  Google Scholar 

  17. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441

    Article  MATH  MathSciNet  Google Scholar 

  18. Mühlbauer Q, Rank P, Kaiser C (2013) On-ground verification of VIBANASS (vision based navigation sensor system): capabilities and results. In: Proceedings of the 12th symposium on advanced space technologies in robotics and automation. Noordwijk, The Netherlands

  19. Nishida SI, Kawamoto S, Okawa Y, Terui F, Kitamura S (2009) Space debris removal system using a small satellite. Acta Astronaut 65(1–2):95–102

    Article  Google Scholar 

  20. Oumer NW, Panin G (2012) Tracking and pose estimation of a non-cooperative satellite using stereo images for on-orbit servicing. In: Proceedings of the international symposium on artificial intelligence, robotics and automation in space (i-SAIRAS). European Space Agency, Turin, Italy

  21. Qiao B, Tang S, Ma K, Liu Z (2013) Relative pose and attitude estimation of spacecrafts based on dual quaternion for rendezvous and docking. Acta Astronaut 91:237–244

    Google Scholar 

  22. Qureshi F, Terzopoulos D (2008) Intelligent perception and control for space robotics: autonomous satellite rendezvous and docking. Mach Vis Appl 19(3):141–161

    Article  Google Scholar 

  23. Shahid K, Okouneva G (2007) Intelligent LIDAR scanning region selection for satellite pose estimation. Comput Vis Image Underst 107(3):203–209

    Article  Google Scholar 

  24. Sommer J, Ahrns I (2013) GNC for rendezvous in space with an uncooperative target. In: Proceedings of the 5th international conference on spacecraft formation flying missions and technologies. Munich, Germany

  25. Stoll E, Letschnik J, Walter U, Artigas J, Kremer P, Preusche C, Hirzinger G (2009) On-orbit servicing. Robot Autom Mag IEEE 16(4):29–33

    Article  Google Scholar 

  26. Tzschichholz T, Boge T, Benninghoff H (2011) A flexible image processing framework for vision-based navigation using monocular imaging sensors. In: Proceedings of the 8th international ESA conference on guidance, navigation & control systems. Karlovy Vary, Czech Republic

  27. Tzschichholz T, Ma L, Schilling K (2011) Model-based spacecraft pose estimation and motion prediction using a photonic mixer device camera. Acta Astronaut 68(7–8):1156–1167

    Article  Google Scholar 

  28. Wertz JR (2002) Attitude determination and control. Kluwer, Dordrecht

    Google Scholar 

  29. Woffinden DC, Geller DK (2007) Relative angles-only navigation and pose estimation for autonomous orbital rendezvous. J Guid Control Dyn 30:1455–1469

    Article  Google Scholar 

  30. Xu W, Liang B, Li C, Xu Y (2010) Autonomous rendezvous and robotic capturing of non-cooperative target in space. Robotica 28(5):705–718

    Article  Google Scholar 

  31. Yasaka T, Ashford EW (1996) GSV: an approach toward space system servicing. Earth Space Rev 5(2):9–17

    Google Scholar 

  32. Zarchan P, Musoff H (2000) Fundamentals of Kalman filtering: a practical approach, vol 190. Progress in Astronautics and Aeronautics, Cambridge, MA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Benninghoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benninghoff, H., Boge, T. & Rems, F. Autonomous Navigation for On-Orbit Servicing. Künstl Intell 28, 77–83 (2014). https://doi.org/10.1007/s13218-014-0297-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13218-014-0297-0

Keywords

Navigation