Skip to main content

Advertisement

Log in

Challenges and Design Goals for an Architecture of a Privacy-preserving Smart City Lab

  • Schwerpunktbeitrag
  • Published:
Datenbank-Spektrum Aims and scope Submit manuscript

Abstract

In the domain of so-called smart cities, ICT technologies play a vital role to improve life quality and resource efficiency in future cities. Many smart city applications depend on sensor data – live data for real-time reaction or stored data for analysis and optimization – to measure city-wide processes like mobility, energy consumption and energy production, or environmental factors like city climate or air quality. To realize such future smart city applications, we face many challenges, including data integration from heterogeneous sensor systems, poor or unknown sensor data quality, effective and efficient management of big sensor data volumes, as well as support the development of mobile and/or analytical applications that use that data. The Bamberg Smart City Lab will provide an Open Data testbed for research and evaluation of sensor-based applications in smart cities. In this paper, we focus particularly on the challenge of privacy: how can we set up long-running city-wide sensor campaigns and share the data without compromising the citizen’s privacy? A fundamental aspect in our current approach is to understand and incorporate the Privacy by Design (PbD) guidelines. We apply them to our specific requirements and develop a privacy-preserving architecture. To do this we evaluate and incorporate the integration of different state-of-the art privacy methods to reduce the risk of leaks to a minimum, especially in the field of online publication of data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://www.ms-wissenschaft.de.

  2. http://www.orbit-lab.org/.

  3. http://www.sandkerwa.de/.

  4. https://www.ipc.on.ca/english/Privacy/Introduction-to-PbD.

References

  1. Abul O, Bonchi F, Nanni M (2008) Never walk alone: Uncertainty for anonymity in moving objects databases. ICDE ’08. IEEE Computer Society, Washington, DC, USA

    Google Scholar 

  2. Agrawal R, Kiernan J, Srikant R, Xu Y (2002) Hippocratic databases. In: Proceedings of the 28th international conference on Very Large Data Bases. VLDB Endowment, pp 143–154

  3. Anderson R (2010) Security Engineering: A Guide to Building Dependable Distributed Systems. Wiley

  4. Bertoni G, Daemen J, Peeters M, Assche G (2013) Advances in Cryptology – EUROCRYPT 2013: 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques. In: Proceedings, chap. Keccak Athens, Greece, May 26-30, 2013. Springer, Berlin, Heidelberg, pp 313–314

    Google Scholar 

  5. Dierks T, Rescorla E (2008) The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard). (Updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685) http://www.ietf.org/rfc/rfc5246.txt

    Google Scholar 

  6. Eckert C (2013) IT-Sicherheit: Konzepte-Verfahren-Protokolle. Oldenbourg Verlag

  7. Ferraiolo D, Kuhn R (1992) Role-based access control. In: 15th NIST-NCSC National Computer Security Conference, pp 554–563

    Google Scholar 

  8. Hustinx P (2010) Privacy by design: delivering the promises. Identity Inf Soc 3(2):253–255

    Article  Google Scholar 

  9. Li N, Li T, Venkatasubramanian S (2007) t‑Closeness: Privacy Beyond k‑Anonymity and l‑Diversity ICDE 2007.

    Google Scholar 

  10. Lindner W, Meier J (2006) Securing the Borealis Data Stream Engine. In: Database Engineering and Applications Symposium, 2006 IDEAS ’06. 10th International. IEEE, pp 137–147

  11. Machanavajjhala A, Kifer D, Gehrke J, Venkitasubramaniam M (2007) L‑diversity: Privacy Beyond K‑anonymity. ACM Trans Knowl Discov Data. doi:10.1145/1217299.1217302

    Google Scholar 

  12. “Office of the Information & Privacy Commissioner of Ontario” (1995) Privacy-Enhancing Technologies: The Path to Anonymity. (Discussion paper) https://www.ipc.on.ca/english/Resources/Discussion-Papers/Discussion-Papers-Summary/?id=329

    Google Scholar 

  13. Pelekis N, Theodoridis Y (2014) Privacy-Aware Mobility Data Exploration. In: Mobility Data Management and Exploration. Springer, New York, pp 169–185

    Book  Google Scholar 

  14. Perrig A, Szewczyk R, Tygar JD, Wen V, Culler DE (2002) Spins: Security protocols for sensor networks. Wirel Netw 8(5):521–534

    Article  MATH  Google Scholar 

  15. Preneel B (1994) Cryptographic hash functions. Eur Trans Telecommun 5(4):431–448

    Article  Google Scholar 

  16. Rivest R (1992) The MD5 Message-Digest Algorithm. RFC 1321 (Informational). (Updated by RFC 6151) http://www.ietf.org/rfc/rfc1321.txt

    Google Scholar 

  17. Schaar P (2012) Datenschutz. Grundlagen, Enwicklungen und Kontroversen, chap. Systemdatenschutz – Datenschutz durch Technik oder warum wir eine Datenschutztechnologie brauchen. Bundeszentrale fuer politische Bildung, pp 363–371

  18. Schaar P (2010) Privacy by Design. Identity Inf Soc 3(2):267–274

    Article  Google Scholar 

  19. Shapiro SS (2012) The State and Evolution of Privacy by Design CCS ’12. ACM, New York, NY, USA

    Book  Google Scholar 

  20. Sweeney L (2002) K‑anonymity: A Model for Protecting Privacy. Int J Uncertain Fuzziness Knowl-based Syst 10(5):557–570

    Article  MathSciNet  MATH  Google Scholar 

  21. Ukil A, Bandyopadhyay S, Bhattacharyya A, Pal A (2013) Lightweight Security Scheme for Vehicle Tracking System Using CoAP. In: Proceedings of the International Workshop on Adaptive Security. ACM, New York, NY, USA

    Google Scholar 

  22. “Office of the Information & Privacy Commissioner of Ontario” (1995) Privacy-Enhancing Technologies: The Path to Anonymity (Discussion paper)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Steuer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steuer, S., Benabbas, A., Kasrin, N. et al. Challenges and Design Goals for an Architecture of a Privacy-preserving Smart City Lab. Datenbank Spektrum 16, 147–156 (2016). https://doi.org/10.1007/s13222-016-0223-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13222-016-0223-8

Keywords

Navigation