Skip to main content
Log in

Partner Selection Shapes the Strategic and Topological Evolution of Cooperation

The Power of Reputation Transitivity

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

Coevolution of individual strategies and social ties, in which individuals not only adjust their strategies by social learning but also switch their adverse partners to search for potential beneficial ones, has attracted increasing attention very recently. It is found that the interplay of strategic updating and partner network adaptation can facilitate the escape from the stalemate of cooperation in social dilemmas. But the question how individual preferential partner choice shapes the dynamical and topological organization of cooperation has yet to be fully answered. Here we propose a simple evolutionary game model to address this problem. In our model, when severing a current disadvantageous partnership, individuals can choose a new partner, either among their friends of friends preferentially according to their reputation scores or randomly from the remaining population. In addition to partner switching, individuals also update their strategies by imitating social neighbors. The interplay between these two processes gives rise to rich evolutionary dynamics. We focus on both strategic and topological evolution. We find that reputation-based partner selection leads to highly heterogeneous and often disassortative partner networks. During the coevolutionary process, a few successful individuals who attain a large number of partners emerge as social hubs and thus directly influence periphery individuals of small degree, forming leader–follower hierarchical structures. Cooperation prevails because of the positive feedback effects: good guys attract more partnerships and “the rich get richer.” Our work sheds light on the emergence and maintenance of cooperation on dynamically changing social networks, where reputation plays a decisive role in the formation of social ties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396

    MathSciNet  Google Scholar 

  2. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Axelrod R (1984) The evolution of cooperation. Basic Books, New York

    Google Scholar 

  4. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  5. Cressman R (2003) Evolutionary dynamics and extensive form games. MIT Press, Cambridge

    MATH  Google Scholar 

  6. Skyrms B (2004) The Stag–Hunt game and the evolution of social structure. Cambridge University Press, Cambridge

    Google Scholar 

  7. Nowak MA (2006) Evolutionary dynamics. Harvard University Press, Cambridge

    MATH  Google Scholar 

  8. Sandholm WH (2010) Population games and evolutionary dynamics. MIT Press, Cambridge

    MATH  Google Scholar 

  9. Nowak MA, Sigmund K (2004) Evolutionary dynamics of biological games. Science 303:793–799

    Google Scholar 

  10. Doebeli M, Hauert C (2005) Models of cooperation based on the Prisoner’s Dilemma and the Snowdrift game. Ecol Lett 8:748–766

    Google Scholar 

  11. Nowak MA (2006) Five rules for the evolution of cooperation. Science 314:1560–1563

    Google Scholar 

  12. Trivers RL (1971) The evolution of reciprocal altruism. Q Rev Biol 46:35–57

    Google Scholar 

  13. Nowak MA, Sigmund K (1992) Tit for tat in heterogeneous populations. Nature 355:250–253

    Google Scholar 

  14. Nowak MA, Sigmund K (1998) Evolution of indirect reciprocity by image scoring. Nature 393:573–577

    Google Scholar 

  15. Nowak MA, Sigmund K (2005) Evolution of indirect reciprocity. Nature 437:1291–1298

    Google Scholar 

  16. Ohtsuki H, Iwasa Y (2006) The leading eight: social norms that can maintain cooperation by indirect reciprocity. J Theor Biol 239:435–444

    MathSciNet  Google Scholar 

  17. Hamilton WD (1964) The evolution of social behavior I. J Theor Biol 7:1–16

    Google Scholar 

  18. Wilson DS (1975) A theory of group selection. Proc Natl Acad Sci USA 72:143–146

    MATH  Google Scholar 

  19. Traulsen A, Nowak MA (2006) Evolution of cooperation by multilevel selection. Proc Natl Acad Sci USA 103:10952–10955

    Google Scholar 

  20. Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359:826–829

    Google Scholar 

  21. Hauert C (2001) Fundamental clusters in spatial 2×2 games. Proc R Soc Lond B 268:761–769

    Google Scholar 

  22. Lieberman E, Hauert C, Nowak MA (2005) Evolutionary dynamics on graphs. Nature 433:312–316

    Google Scholar 

  23. Ohtsuki H, Hauert C, Lieberman E, Nowak MA (2006) A simple rule for the evolution of cooperation on graphs and social networks. Nature 441:502–505

    Google Scholar 

  24. Nowak MA, Tarnita CE, Antal T (2010) Evolutionary dynamics in structured populations. Phil Trans R Soc B 365:19–30

    Google Scholar 

  25. Tarnita CE, Antal T, Ohtsuki H, Nowak MA (2009) Evolutionary dynamics in set structured populations. Proc Natl Acad Sci USA 106:8601–8604

    Google Scholar 

  26. Tarnita CE, Ohtsuki H, Antal T, Fu F, Nowak MA (2009) Strategy selection in structured populations. J Theor Biol 259:570–581

    Google Scholar 

  27. Antal T, Ohtsuki H, Wakeley J, Taylor PD, Nowak MA (2009) Evolution of cooperation by phenotypic similarity. Proc Natl Acad Sci USA 106:8597–8600

    Google Scholar 

  28. Riolo RL, Cohen MD, Axelrod R (2001) Evolution of cooperation without reciprocity. Nature 414:441–443

    Google Scholar 

  29. Traulsen A, Schuster HG (2003) Minimal model for tag-based cooperation. Phys Rev E 68:046129

    Google Scholar 

  30. Hammond RA, Axelrod R (2006) The evolution of ethnocentrism. J Confl Resolut 50:1–11

    Google Scholar 

  31. Jansen VAA, van Baalen M (2006) Altruism through beard chromodynamics. Nature 440:663–666

    Google Scholar 

  32. Traulsen A, Nowak MA (2007) Chromodynamics of cooperation in finite populations. PLoS ONE 2:e270

    Google Scholar 

  33. Sigmund K, Hauert C, Nowak MA (2001) Reward and punishment. Proc Natl Acad Sci USA 98:10757–10762

    Google Scholar 

  34. Fehr E, Fischbacher U (2003) The nature of human altruism. Nature 425:785–791

    Google Scholar 

  35. Hauert C, Traulsen A, Brandt H, Nowak MA, Sigmund K (2007) Via freedom to coercion: the emergence of costly punishment. Science 316:1905–1907

    MathSciNet  Google Scholar 

  36. Rand DG, Dreber A, Ellingsen T, Fudenberg D, Nowak MA (2009) Positive interactions promote public cooperation. Science 325:1272–1275

    MathSciNet  Google Scholar 

  37. Rand DG, Armao J, Nakamaru M, Ohtsuki H (2010) Anti-social punishment can prevent the co-evolution of punishment and cooperation. J Theor Biol 265:624–632

    Google Scholar 

  38. Sigmund K, De Silva H, Traulsen A, Hauert C (2010) Social learning promotes institutions for governing the commons. Nature 466:861–863

    Google Scholar 

  39. Szolnoki A, Perc M (2010) Reward and cooperation in the spatial public goods game. Europhys Lett 92:38003

    Google Scholar 

  40. Hauert C, De Monte S, Hofbauer J, Sigmund K (2002) Volunteering as red queen mechanism for cooperation in public goods game. Science 296:1129–1132

    Google Scholar 

  41. Szabó G, Hauert C (2002) Phase transitions and volunteering in spatial public goods games. Phys Rev Lett 89:118101

    Google Scholar 

  42. Hauert C, Holmes M, Doebeli M (2006) Evolutionary games and population dynamics: maintenance of cooperation in public goods games. Proc R Soc Lond B 273:2565–2570

    Google Scholar 

  43. Hauert C, Wakano JY, Doebeli M (2008) Ecological public goods games: cooperation and bifurcation. Theor Popul Biol 73:257–263

    MATH  Google Scholar 

  44. Melbinger A, Cremer J, Frey E (2010) Evolutionary game theory in growing populations. Phys Rev Lett 105:178101

    Google Scholar 

  45. Helbing D, Yu WJ (2009) The outbreak of cooperation among success-driven individuals under noisy conditions. Proc Natl Acad Sci USA 106:3680–3685

    Google Scholar 

  46. Wu ZX, Xu XJ, Huang ZG, Wang SJ, Wang YH (2006) Evolutionary prisoner’s dilemma game with dynamic preferential selection. Phys Rev E 74:021107

    MathSciNet  Google Scholar 

  47. Perc M (2006) Double resonance in cooperation induced by noise and network variation for an evolutionary prisoner’s dilemma. New J Phys 8:183

    Google Scholar 

  48. Perc M, Marhl M (2006) Evolutionary and dynamical coherence resonances in the pair approximated prisoner’s dilemma game. New J Phys 8:142

    Google Scholar 

  49. Perc M (2006) Chaos promotes cooperation in the spatial prisoner’s dilemma game. Europhys Lett 75:841–846

    MathSciNet  Google Scholar 

  50. Reichenbach T, Mobilia M, Frey E (2007) Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games. Nature 448:1046–1049

    Google Scholar 

  51. Szolnoki A, Perc M, Szabó G (2008) Diversity of reproduction rate supports cooperation in the prisoner’s dilemma game on complex networks. Eur Phys J B 61:505–509

    MathSciNet  MATH  Google Scholar 

  52. Szabó G, Szolnoki A, Vukov J (2009) Selection of dynamical rules in spatial prisoner’s dilemma games. Europhys Lett 87:18007

    Google Scholar 

  53. Yang HX, Wang WX, Wu ZX, Lai YC, Wang BH (2009) Diversity-optimized cooperation on complex networks. Phys Rev E 79:056107

    Google Scholar 

  54. Roca CP, Cuesta JA, Sánchez A (2009) Evolutionary game theory: temporal and spatial effects beyond replicator dynamics. Phys Life Rev 6:208–249

    Google Scholar 

  55. Wu T, Fu F, Wang L (2009) Partner selections in public goods games with constant group size. Phys Rev E 80:026121

    MathSciNet  Google Scholar 

  56. Abramson G, Kuperman M (2001) Social games in a social network. Phys Rev E 63:030901

    Google Scholar 

  57. Kim BJ, Trusina A, Holme P, Minnhagen P, Chung JS, MY Choi (2002) Dynamic instabilities induced by asymmetric influence: prisoners’ dilemma game in small-world networks. Phys Rev E 66:021907

    Google Scholar 

  58. Santos FC, Pacheco JM (2005) Scale-free networks provide a unifying framework for the emergence of cooperation. Phys Rev Lett 95:098104

    Google Scholar 

  59. Szabó G, Vukov J, Szolnoki A (2005) Phase diagrams for evolutionary prisoner’s dilemma game on two-dimensional lattices. Phys Rev E 72:047107

    Google Scholar 

  60. Vukov J, Szabó G, Szolnoki A (2006) Cooperation in noisy case: prisoner’s dilemma game on two types of regular random graphs. Phys Rev E 73:067103

    Google Scholar 

  61. Santos FC, Pacheco JM, Lenaerts T (2006) Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc Natl Acad Sci USA 103:3490–3494

    Google Scholar 

  62. Santos FC, Rodrigues JF, Pacheco JM (2006) Graph topology plays a determinant role in the evolution of cooperation. Proc R Soc Lond B 273:51–55

    Google Scholar 

  63. Tang CL, Wang WX, Wu X, Wang BH (2006) Effects of average degree on cooperation in networked evolutionary game. Eur Phys J B 53:411–415

    MATH  Google Scholar 

  64. Fu F, Liu LH, Wang L (2007) Evolutionary prisoner’s dilemma game on heterogeneous Newman–Watts small-world network. Eur Phys J B 56:367–372

    Google Scholar 

  65. Rong ZH, Li X, Wang XF (2007) Roles of mixing patterns in cooperation on a scale-free networked game. Phys Rev E 76:027101

    Google Scholar 

  66. Gómez-Gardeñes J, Campillo M, Floría LM, Moreno Y (2007) Dynamical organization of cooperation in complex topologies. Phys Rev Lett 98:108103

    Google Scholar 

  67. Santos FC, Santos MD, Pacheco JM (2008). Social diversity promotes the emergence of cooperation in public goods games. Nature 454:213–216

    Google Scholar 

  68. Fowler JH, Christakis NA (2010) Cooperative behavior cascades in human social networks. Proc Natl Acad Sci USA 107:5334–5338

    Google Scholar 

  69. Masuda N (2007) Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation. Proc R Soc Lond B 274:1815–1821

    MathSciNet  Google Scholar 

  70. Szolnoki A, Perc M, Danku Z (2008) Towards effective payoffs in the prisoner’s dilemma game on scale-free networks. Physica A 387:2075–2082

    Google Scholar 

  71. Szabó G, Fáth G (2007) Evolutionary games on graphs. Phys Rep 446:97–216

    MathSciNet  Google Scholar 

  72. Gross T, Blasius B (2008) Adaptive coevolutionary networks: a review. Interface 5:259–271

    Google Scholar 

  73. Skyrms B, Pemantle R (2000) A dynamical model of social network formation. Proc Natl Acad Sci USA 97:9340–9346

    MATH  Google Scholar 

  74. Ebel H, Bornholdt S (2002) Coevolutionary games on networks. Phys Rev E 66:056118

    Google Scholar 

  75. Zimmermann MG, Eguíluz VM, San Miguel M (2004) Co-evolution of dynamical states and interactions in dynamic networks. Phys Rev E 69:065102

    Google Scholar 

  76. Zimmermann MG, Eguíluz VM, San Miguel M (2004) Phys Rev E 69:065102(R)

    Google Scholar 

  77. Zimmermann MG, Eguíluz VM (2005) Cooperation, social networks, and the emergence of leadership in a prisoner’s dilemma with adaptive local interactions. Phys Rev E 72:056118

    MathSciNet  Google Scholar 

  78. Eguíluz VM, Zimmermann MG, Cela-Conde CJ, San Miguel M (2005) Cooperation and the emergence of role differentiation in the dynamics of social networks. Am J Sociol 110:977–1008

    Google Scholar 

  79. Santos FC, Pacheco JM, Lenaerts T (2006) Cooperation prevails when individuals adjust their social ties. PLoS Comput Biol 2:1284

    Google Scholar 

  80. Holme P, Ghoshal G (2006) Dynamics of networking agents competing for high centrality and low degree. Phys Rev Lett 96:098701

    Google Scholar 

  81. Pacheco JM, Traulsen A, Nowak MA (2006) Coevolution of strategy and structure in complex networks with dynamical linking. Phys Rev Lett 97:258103

    Google Scholar 

  82. Hanaki N, Peterhansl A, Dodds PS, Watts DJ (2007) Cooperation in evolving social networks. Manag Sci 53:1036–1050

    Google Scholar 

  83. Fu F, Hauert C, Nowak MA, Wang L (2008) Reputation-based partner choice promotes cooperation in social networks. Phys Rev E 78:026117

    Google Scholar 

  84. Fu F, Wu T, Wang L (2009) Partner switching stabilizes cooperation in coevolutionary Prisoner’s Dilemma. Phys Rev E 79:036101

    MathSciNet  Google Scholar 

  85. Van Segbroeck S, Santos FC, Lenaerts T, Pacheco JM (2009) Reacting differently to adverse ties promotes cooperation in social networks. Phys Rev Lett 102:058105

    Google Scholar 

  86. Szolnoki A, Perc M (2009) Resolving social dilemmas on evolving random networks. Europhys Lett 86:30007

    Google Scholar 

  87. Szolnoki A, Perc M (2009) Emergence of multilevel selection in the prisoner’s dilemma game on coevolving random networks. New J Phys 11:093033

    Google Scholar 

  88. Van Segbroeck S, Santos FC, Pacheco JM, Lenaerts T (2010) Coevolution of cooperation, response to adverse social ties and network structure. Games 1:317–337

    MathSciNet  Google Scholar 

  89. Wu B, Zhou D, Fu F, Luo QJ, Wang L, Traulsen A (2010) Evolution of cooperation on stochastic dynamical networks. PLoS ONE 5:e11187

    Google Scholar 

  90. Lee SM, Holme P, Wu ZX (2011) Emergent hierarchical structures in multiadaptive games. Phys Rev Lett 106:028702

    Google Scholar 

  91. Perc M, Szolnoki A (2010) Coevolutionary games—a mini review. Biosystems 99:109–125

    Google Scholar 

  92. Christakis NA, Fowler JH (2009) Connected: the surprising power of our social networks and how they shape our lives. Little, Brown and Company, New York

    Google Scholar 

  93. Ohtsuki H, Iwasa Y (2004) How should we define goodness?—reputation dynamics in indirect reciprocity. J Theor Biol 231:107–120

    MathSciNet  Google Scholar 

  94. Pacheco JM, Santos FC, Chalub FACC (2006) Stern-judging: a simple, successful norm which promotes cooperation under indirect reciprocity. PLoS Comput Biol 2:e178

    Google Scholar 

  95. Chalub FACC, Santos FC, Pacheco JM (2006) The evolution of norms. J Theor Biol 241:233–240

    MathSciNet  Google Scholar 

  96. Sommerfeld RD, Krambeck HJ, Semmann D, Milinski M (2007) Gossip as an alternative for direct observation in games of indirect reciprocity. Proc Natl Acad Sci USA 104:17435–17440

    Google Scholar 

  97. Bshary R, Grutter AS (2005) Punishment and partner switching cause cooperative behaviour in a cleaning mutualism. Biol Lett 1:396–399

    Google Scholar 

  98. Nesse RM (2007) Runaway social selection for displays of partner value and altruism. Biol Theor 2:143–155

    Google Scholar 

  99. Langer P, Nowak MA, Hauert C (2008) Spatial invasion of cooperation. J Theor Biol 250:634–641

    Google Scholar 

  100. Fu F, Nowak MA, Hauert C (2010) Invasion and expansion of cooperators in lattice populations: prisoner’s dilemma vs. snowdrift games. J Theor Biol 266:358–366

    Google Scholar 

  101. Szabó G, Tőke C (1998) Evolutionary prisoner’s dilemma game on a square lattice. Phys Rev E 58:69

    Google Scholar 

  102. Traulsen A, Pacheco JM, Nowak MA (2007) Pairwise comparison and selection temperature in evolutionary game dynamics. J Theor Biol 246:522–529

    MathSciNet  Google Scholar 

  103. Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89:208701

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, F., Fu, F. Partner Selection Shapes the Strategic and Topological Evolution of Cooperation. Dyn Games Appl 1, 354–369 (2011). https://doi.org/10.1007/s13235-011-0015-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-011-0015-6

Keywords

Navigation